High voltage, solid state, inductive adder, pulse generators have found increasing application as fast kicker pulse modulators for charged particle beams. The solid state, inductive adder, pulse generator is similar in operation to the linear induction accelerator. The main difference is that the solid state, adder couples energy by transformer action from multiple primaries to a voltage summing stalk, instead of an electron beam. Ideally, the inductive adder produces a rectangular voltage pulse at the load. In reality, there is usually some voltage variation at the load due to droop on primary circuit storage capacitors, or, temporal variations in the load impedance. Power MOSFET circuits have been developed to provide analog modulation of the output voltage amplitude of a solid state, inductive adder, pulse generator. The modulation is achieved by including MOSFET based, variable subtraction circuits in the multiple primary stack. The subtraction circuits can be used to compensate for voltage droop, or, to tailor the output pulse amplitude to provide a desired effect in the load. Power MOSFET subtraction circuits have been developed to modulate short, temporal (60-400 ns), voltage and current pulses. MOSFET devices have been tested up to 20 amps and 800 Volts with a band pass of 50 MHz. An analog modulation cell has been tested in a five cell high, voltage adder stack.
The Beam Research Program at Lawrence Livermore National Laboratory (LLNL) has been developing solidstate modulators for accelerator applications for several years. These modulators are based on inductive adder circuit topology and have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. These modulators are also capable of being scaled to higher output voltage and power levels. An explanation of the circuit operation will be presented along with test data of several different hardware systems.
As the switching capabilities of solid-state devices increase, these devices are being incorporated into modulator designs for high voltage accelerator applications. Solidstate modulators based on inductive adder circuit topology have demonstrated great versatility with regard to pulse width and pulse repetition rate while maintaining fast pulse rise and fall times. Additionally, these modulators are capable of being scaled to higher output voltage and power levels. An explanation of the basic circuit operation will be presented as well as test data of several different hardware systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.