The evolution of the size distribution of (Fe,Cr) carbides and the dislocation structure in low-chromium steel is studied during quenching and rapid heating by in situ small-angle X-ray scattering (SAXS). The two-dimensional SAXS patterns consist of streaks on top of an isotropic SAXS signal. The evolution of the size distribution of the (Fe,Cr) carbides during heat treatment is determined from the isotropic component of the SAXS patterns. The isotropic part of the SAXS patterns shows that, after austenitization and quenching to room temperature, the average precipitate radius is 4.74 nm and the dispersion parameter for the lognormal size distribution is 0.33. Subsequent rapid heating to 823 K results in an average precipitate size of 5.25 nm and a dispersion parameter of 0.26. Bright-field transmission electron microscopy and highresolution transmission electron microscopy reveal the nearly spherical morphology of the precipitates. The microstructural evolution underlying the increase in the average precipitate size and the decrease in the dispersion parameter after heating to and annealing at 823 K is probably that at room temperature two types of precipitates are present, i.e. (Fe,Cr) 23 C 6 and (Fe,Cr) 7 C 3 precipitates according to thermodynamic calculations, and at 823 K only (Fe,Cr) 7 C 3 precipitates are present. Additional measurements have been carried out on a single crystal of ferrite containing (Fe,Cr) carbides by combining three-dimensional X-ray diffraction (3DXRD) and SAXS during rotation of the specimen at room temperature, in order to investigate the origin of the streaks at low angles in the SAXS pattern. From simulations based on the theory of SAXS from dislocations, it is shown that the measured streaks, including the spottiness, in the two-dimensional SAXS patterns correspond to a dislocation structure of symmetric low-angle tilt boundaries, which in turn corresponds to the crystallographic orientation gradient in the single crystal of ferrite as measured by 3DXRD microscopy.
The precipitation of NbC in austenite is an important mechanism for improving the strength of steel because NbC-precipitates are known to decrease the ferrite grain size during the subsequent phase transformations upon cooling. The effect of the interaction between niobium (Nb) in solid solution and NbC-precipitates on the austenite-to-ferrite phase-transformation kinetics is not entirely clear. We study a high-purity Fe-C-Mn-Nb alloy cooled at different rates. Different annealing times at 850°C were applied to create different number densities and sizes of the NbC-precipitates in order to study the effect of NbC precipitation on the transformation kinetics. The alloy that is used in this study has an atomic ratio of Nb:C=1.3:1. The fraction of ferrite is measured as a function of temperature during cooling by means of dilatometry. The ferrite grain size is measured by means of optical microscopy. The results are interpreted with thermodynamic and kinetic models.
Abstract. This work presents the development of a non-destructive imaging technique for the investigation of the microstructure of cementite grains embedded in a ferrite matrix of medium-carbon steel. The measurements were carried out at the material science beamline of the European Synchrotron Radiation Facility (ESRF) ID11. It was shown that in-line X-ray phase-contrast tomography (PCT) can be used for the detection of cementite grains of several microns in size. X-ray PCT of the cementite structure can be achieved by either a 'single distance' or a 'multiple distance' acquisition protocol. The latter permits quantitative phase retrieval. A second imaging technique, X-ray diffraction-contrast tomography (DCT), was employed to obtain information about the shapes and crystallographic orientations of the distinct ferrite grains surrounding the cementite structures. The initial results demonstrate the feasibility of determining the geometry of the cementite grains after the austenite-ferrite phase-transformation in a non-destructive manner. The results obtained with PCT and DCT are verified with ex-situ optical microscopy studies of the same specimen. Figure 1. Optical microscopy images of the cementite-ferrite structure. Images are acquired after 1, 10, 20 and 70 hours of annealing at a temperature of 700ºC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.