Context. IC443 is a supernova remnant located in a quite complex environment since it interacts with nearby clouds. Indications for the presence of overionized plasma have been found though the possible physical causes of overionization are still debated. Moreover, because of its peculiar position and proper motion, it is not clear if the pulsar wind nebula (PWN) within the remnant is the relic of the IC443 progenitor star or just a rambling one seen in projection on the remnant. Aims. Here we address the study of IC443 plasma in order to clarify the relationship PWN-remnant, the presence of overionization and the origin of the latter. Methods. We analyzed two XMM-Newton observations producing background-subtracted, vignetting-corrected and mosaicked images in two different energy bands and we performed a spatially resolved spectral analysis of the X-ray emission. Results. We identified an elongated (jet-like) structure with Mg-rich plasma in overionization. The head of the jet is interacting with a molecular cloud and the jet is aligned with the position of the PWN at the instant of the supernova explosion. Interestingly, the direction of the jet of ejecta is somehow consistent with the direction of the PWN jet. Conclusions. Our discovery of a jet of ejecta in IC443 enlarge the sample of core-collapse SNRs with collimated ejecta structures. IC443's jet is the first one which shows overionized plasma, possibly associated with the adiabatic expansion of ejecta. The match between the jet's direction and the original position of the PWN strongly supports the association between the neutron star and IC443.
Since the day of its explosion, SN 1987A (SN87A) was closely monitored with the aim to study its evolution and to detect its central compact relic. The detection of neutrinos from the supernova strongly supports the formation of a neutron star (NS). However, the constant and fruitless search for this object has led to different hypotheses on its nature. To date, the detection in the Atacama Large Millimeter/submillimeter Array data of a feature that is somehow compatible with the emission arising from a proto-pulsar wind nebula (PWN) is the only hint of the existence of such elusive compact object. Here we tackle this 33 yr old issue by analyzing archived observations of SN87A performed by Chandra and NuSTAR in different years. We firmly detect nonthermal emission in the 10–20 kev energy band, due to synchrotron radiation. The possible physical mechanism powering such emission is twofold: diffusive shock acceleration (DSA) or emission arising from an absorbed PWN. By relating a state-of-the-art magnetohydrodynamic simulation of SN87A to the actual data, we reconstruct the absorption pattern of the PWN embedded in the remnant and surrounded by cold ejecta. We found that, even though the DSA scenario cannot be firmly excluded, the most likely scenario that well explains the data is that of PWN emission.
Context. The morphology and the distribution of material observed in supernova remnants (SNRs) reflect the interaction of the supernova (SN) blast wave with the ambient environment, the physical processes associated with the SN explosion, and the internal structure of the progenitor star. IC 443 is a mixed-morphology (MM) SNR located in a quite complex environment: it interacts with a molecular cloud in the northwestern and southeastern areas and with an atomic cloud in the northeast. Aims. In this work, we aim to investigate the origin of the complex morphology and multi-thermal X-ray emission observed in SNR IC 443 through the study of the effect of the inhomogeneous ambient medium in shaping its observed structure and an exploration of the main parameters characterizing the remnant. Methods. We developed a 3D hydrodynamic (HD) model for IC 443, which describes the interaction of the SNR with the environment, parametrized in agreement with the results of the multi-wavelength data analysis. We performed an ample exploration of the parameter space describing the initial blast wave and the environment, including the mass of the ejecta, the energy and position of the explosion, as well as the density, structure, and geometry of the surrounding clouds. From the simulations, we synthesized the X-ray emission maps and spectra and compared them with actual X-ray data collected by XMM-Newton. Results. Our model explains the origin of the complex X-ray morphology of SNR IC 443 in a natural way, with the ability to reproduce, for the first time, most of the observed features, including the centrally-peaked X-ray morphology (characteristic of MM SNRs) when considering the origin of the explosion at the position where the pulsar wind nebula CXOU J061705.3+222127 was at the time of the explosion. In the model that best reproduces the observations, the mass of the ejecta and the energy of the explosion are ~7 M⊙ and ~1 × 1051 erg, respectively. From the exploration of the parameter space, we find that the density of the clouds is n > 300 cm−3 and that the age of SNR IC 443 is ~8000 yr. Conclusions. The observed inhomogeneous ambient medium is the main property responsible for the complex structure and the X-ray morphology of SNR IC 443, resulting in a very asymmetric distribution of the ejecta due to the off-centered location of the explosion inside the cavity formed by the clouds. It can be argued that the centrally peaked morphology (typical of MM SNRs) is a natural consequence of the interaction with the complex environment. A combination of high resolution X-ray observations and accurate 3D HD modeling is needed to confirm whether this scenario is applicable to other MM SNRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.