The objective of the present study was to perform a genome-wide association study (GWAS) for growth curve parameters using nonlinear models that fit original weight–age records. In this study, data from 808 Chinese Simmental beef cattle that were weighed at 0, 6, 12, and 18 months of age were used to fit the growth curve. The Gompertz model showed the highest coefficient of determination (R2 = 0.954). The parameters’ mature body weight (A), time-scale parameter (b), and maturity rate (K) were treated as phenotypes for single-trait GWAS and multi-trait GWAS. In total, 9, 49, and 7 significant SNPs associated with A, b, and K were identified by single-trait GWAS; 22 significant single nucleotide polymorphisms (SNPs) were identified by multi-trait GWAS. Among them, we observed several candidate genes, including PLIN3, KCNS3, TMCO1, PRKAG3, ANGPTL2, IGF-1, SHISA9, and STK3, which were previously reported to associate with growth and development. Further research for these candidate genes may be useful for exploring the full genetic architecture underlying growth and development traits in livestock.
The majority of goats in Tanzania belong to the Small East African (SEA) breed, which exhibits large phenotypic variation. This study aimed to determine the genetic structure of, and relationships among four populations (Sukuma, Gogo, Sonjo, and Pare) of the SEA breed that have not been studied adequately. A total of 120 individuals (24 from each population) were analysed at eight microsatellite loci. In addition, 24 goats of the South African Boer breed were used as reference. Observed heterozygosity (Ho) ranged from 0.583 ± 0.04 for Sukuma to 0.659 ± 0.030 for Gogo, while expected heterozygosity (He) ranged from 0.632 ± 0.16 for Sukuma to 0.716 ± 0.16 for Boer. Five loci deviated from Hardy-Weinberg equilibrium (HWE) across populations. The mean number of alleles ranged from 4.75 ± 1.58 for Pare to 6.88 ± 3.00 for Sukuma. The mean inbreeding coefficient (F IS ) ranged from 0.003 in Sonjo to 0.148 in Sukuma. The differentiation coefficient (F ST ) was highest (0.085) between Boer and Sukuma and lowest (0.008) between Gogo and Sonjo. The largest genetic distance (0.456) was found between Sukuma and Boer, while the smallest (0.031) was between Gogo and Sonjo populations. Pare, Gogo, and Sonjo populations, formed one cluster, while Sukuma and Boer populations formed two separate clusters. From the findings, it can be concluded that the SEA goats in this study showed high in population genetic variation, which implies that there is good scope for their further improvement through selection within populations. The Sukuma population, which has fairly high inbreeding, is moderately differentiated from Pare, Sonjo, and Gogo goat populations, which showed a high level of admixture. Conservation and improvement strategies of the goats should be designed with first priority being on Sukuma goats.
Summary As one of the best‐known commercial goat breeds in the world, Boer goat has undergone long‐term artificial selection for nearly 100 years, and its excellent growth rate and meat production performance have attracted considerable worldwide attention. Herein, we used single nucleotide polymorphisms (SNPs) called from the whole‐genome sequencing data of 46 Australian Boer goats to detect polymorphisms and identify genomic regions related to muscle development in comparison with those of 81 non‐specialized meat goat individuals from Europe, Africa, and Asia. A total of 13 795 202 SNPs were identified, and the whole‐genome selective signal screen with a π ratio of nucleotide diversity (πcase/πcontrol) and pairwise fixation index (FST) was analyzed. Finally, we identified 1741 candidate selective windows based on the top 5% threshold of both parameters; here, 449 candidate genes were only found in 727 of these regions. A total of 433 genes out of the 449 genes obtained were annotated to 2729 gene ontology terms, of which 51 were directly linked to muscle development (e.g., muscle organ development, muscle cell differentiation) by 30 candidate genes (e.g., JAK2, KCNQ1, PDE5A, PDLIM5, TBX5). In addition, 246 signaling pathways were annotated by 178 genes, and two pathways related to muscle contraction, including vascular smooth muscle contraction (ADCY7, PRKCB, PLA2G4E, ROCK2) and cardiac muscle contraction (CACNA2D3, CASQ2, COX6B1), were identified. The results could improve the current understanding of the genetic effects of artificial selection on the muscle development of goat. More importantly, this study provides valuable candidate genes for future breeding of goats.
The Tibetan sheep is an indigenous breed living in the entire Tibetan Plateau, and its origin and phylogenic relationships are still uncertain and controversial. In this study, we analyzed partial mtDNA D-loop sequences of 156 Chinese Tibetan sheep individuals from 12 distributed geographic ecotype populations. Phylogenetic analysis indicated that three maternal lineages (haplogroups A, B and C) were found in this breed and that Ovis vignei and Ovis ammon have possibly contributed to the original Tibetan sheep. The absence of haplogroups D and E in Tibetan sheep suggests that this breed did not originate in the Middle East, China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.