Brain-computer interfaces (BCIs) may be a future communication channel for motor-disabled people. In surface electroencephalogram (EEG)-based BCIs, the extracted features are often derived from spectral estimates and autoregressive models. We examined the usefulness of synchronization between EEG signals for classifying mental tasks. To this end, we investigated the performance of features derived from the phase locking value (PLV) and from the spectral coherence and compared them to the classification rates resulting from the power densities in alpha, beta1, beta2, and 8-30-Hz frequency bands. Five recordings of 60 min, acquired from three subjects while performing three different mental tasks, were analyzed offline. No artifacts were removed or rejected. We noticed significant differences between PLV and mean spectral coherence. For sole use of synchronization measures, classification accuracies up to 62% were achieved. In general, the best result was obtained combining phase synchronization measures with alpha power spectral density estimates. The results demonstrate that phase synchronization provides relevant information for the classification of spontaneous EEG during mental tasks.
The generalization performance is as good as the one obtained with SVM-rfe, but this algorithm is faster and selects fewer features. These properties may make FCBF a valuable tool for further improvement of BCIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.