Abstract-An AlGaAs-GaAs asymmetric double-quantum-well (DQW) optical phase modulator using surface acoustic waves is investigated theoretically. The optimization steps of the DQW structure, which so far have not been reported in detail, are discussed here. The optimized phase modulator structure is found to contain a five-period QDW active region. A surface acoustic wave induces a potential field which provides the phase modulation. Analysis of the modulation characteristics show that by using the asymmetric DQW, the large change of the induced potential at the surface and thus large modification of the quantum-well (QW) structure can be utilized. The modification of each QW structure is consistent, although this consistency is not always preserved in typical surface acoustic wave devices. Consequently, the change of refractive index in each of the five DQW's is almost identical. Besides, the change of effective refractive index is ten times larger here in comparison to a modulator with a five-period single QW as the active region and thus produces a larger phase modulation. In addition, a long wavelength and a low surface acoustic wave power required here simplify the fabrication of surface acoustic wave transducer and the acoustooptic phase modulator.Index Terms-Acoustooptic device, double quantum well, electrooptical modulation, piezoelectric effect of surface acoustic waves, surface acoustic wave modulator.
We assess the relative merits and prospects of using diffused quantum-well (QW) structures in semiconductor lasers. First, different techniques to achieve interdiffusion are analyzed and compared. Second, recent development of semiconductor lasers using interdiffusion technique is also discussed. Third, the optical properties of diffused QW's are studied. In addition, novel design of diffused QW's structures to maintain stable singlemode operation in semiconductor lasers is proposed. Finally, brief discussion and conclusion are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.