Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is a multi-functional protein that is expressed in basally phosphorylated (p56) and in hyperphosphorylated (p58) forms. NS5A phosphorylation has been implicated in regulating multiple aspects of HCV replication. We recently reported the identification of a class of compounds that potently inhibit HCV RNA replication by targeting NS5A. Although the precise mechanism of inhibition of these compounds is not well understood, one activity that has been described is their ability to block expression of the hyperphosphorylated form of NS5A. Here, we report that an NS5A inhibitor impaired hyperphosphorylation without affecting basal phosphorylation at the C-terminal region of NS5A. This inhibitor activity did not require NS5A domains II and III and was distinct from that of a cellular kinase inhibitor that also blocked NS5A hyperphosphorylation, results that are consistent with an inhibitor-binding site within the N-terminal region of NS5A. In addition, we observed that an NS5A inhibitor promoted the accumulation of an HCV polyprotein intermediate, suggesting that inhibitor binding to NS5A may occur prior to the completion of polyprotein processing. Finally, we observed that NS5A p56 and p58 separated into different membrane fractions during discontinuous sucrose gradient centrifugation, consistent with these NS5A phosphoforms performing distinct replication functions. The p58 localization pattern was disrupted by an NS5A inhibitor. Collectively, our results suggest that NS5A inhibitors probably impact several aspects of HCV expression and regulation. These findings may help to explain the exceptional potency of this class of HCV replication complex inhibitors.
The biphenyl derivatives 2 and 3 are prototypes of a novel class of NS5A replication complex inhibitors that demonstrate high inhibitory potency toward a panel of clinically relevant HCV strains encompassing genotypes 1-6. However, these compounds exhibit poor systemic exposure in rat pharmacokinetic studies after oral dosing. The structure-activity relationship investigations that improved the exposure properties of the parent bis-phenylimidazole chemotype, culminating in the identification of the highly potent NS5A replication complex inhibitor daclatasvir (33) are described. An element critical to success was the realization that the arylglycine cap of 2 could be replaced with an alkylglycine derivative and still maintain the high inhibitory potency of the series if accompanied with a stereoinversion, a finding that enabled a rapid optimization of exposure properties. Compound 33 had EC50 values of 50 and 9 pM toward genotype-1a and -1b replicons, respectively, and oral bioavailabilities of 38-108% in preclinical species. Compound 33 provided clinical proof-of-concept for the NS5A replication complex inhibitor class, and regulatory approval to market it with the NS3/4A protease inhibitor asunaprevir for the treatment of HCV genotype-1b infection has recently been sought in Japan.
Trimethoprim
(TMP)
is widely used to treat infections in humans
and in livestock, accelerating the incidence of TMP resistance. The
emergent and largely untracked type II dihydrofolate reductases (DfrBs)
are intrinsically TMP-resistant plasmid-borne Dfrs that are structurally
and evolutionarily unrelated to chromosomal Dfrs. We report kinetic
characterization of the known DfrB family members. Their kinetic constants
are conserved and all are poorly inhibited by TMP, consistent with
TMP resistance. We investigate their inhibition with known and novel
bisubstrate inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase
(HPPK). Importantly, all are inhibited by the HPPK inhibitors, making
these molecules dual-target inhibitors of two folate pathway enzymes
that are strictly microbial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.