Centrifuges are used for 1 x g controls in space flight microgravity experiments and in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the centrifuge and the geometry of the experiment hardware used these shear forces contribute significantly to the total force acting on the cells or tissues. The inertial shear force artifact should be dealt with for future experiment hardware development for Shuttle and the International Space Station (ISS) as well as for the interpretation of previous space-flight and on-ground research data.
Opto-mechanical instruments are sensitive to temperature effects. The optical performance will be influenced by temperature variations within an instrument. Temperature variations can occur due to environmental or internal heat sources. Assembly at a different temperature than eventual operation of the instrument can also influence the performance. This paper describes principles to minimize thermal disturbance of optical performance. The thermal behaviour of a system can area-wise be divided in heat source, heat transfer area and place where the optical performance is affected. Placement of the heat source is critical. Using a large thermal capacity, the influence of the source will be minimized. Heat transfer can be controlled by insulation or by good conduction, the latter minimizing the thermal gradient along the thermal path. Thermo mechanical effects on the optical performance can be controlled using a thermal centre, a combination of materials with different expansion properties, low thermal expansion materials and scaling effects of the optical design. TNO TPD designs and manufactures opto-mechanical instruments for space and astronomy. The design guidelines described are commonly used in these instruments. Several examples of the application of these design guidelines are presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.