We introduce a model for matters-genesis in which both the baryonic and dark matter asymmetries originate from a first-order phase transition in a dark sector with an SU (3) × SU (2) × U (1) gauge group and minimal matter content. In the simplest scenario, we predict that dark matter is a dark neutron with mass either mn = 1.33 GeV or mn = 1.58 GeV. Alternatively, dark matter may be comprised of equal numbers of dark protons and pions. This model, in either scenario, is highly discoverable through both dark matter direct detection and dark photon search experiments. The strong dark matter self interactions may ameliorate small-scale structure problems, while the strongly first-order phase transition may be confirmed at future gravitational wave observatories.
A: Large liquid argon time projection chambers (LArTPCs), especially those operating near the surface, are susceptible to space charge effects. In the context of LArTPCs, the space charge effect is the build-up of slow-moving positive ions in the detector primarily due to ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacement in the reconstructed position of signal ionization electrons in LArTPC detectors ("spatial distortions"), as well as to variations in the amount of electron-ion recombination experienced by ionization throughout the volume of the TPC. We present techniques that can be used to measure and correct for space charge effects in large LArTPCs by making use of cosmic muons, including the use of track pairs to unambiguously pin down spatial distortions in three dimensions. The performance of these calibration techniques are studied using both Monte Carlo simulation and MicroBooNE data, utilizing a UV laser system as a means to estimate the systematic bias associated with the calibration methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.