In this paper, we derive the non-commutative corrections to the maximal acceleration in the Doplicher-Fredenhagen-Roberts (DFR) space-time and show that the effect of the non-commutativity is to decrease the magnitude of the value of the maximal acceleration in the commutative limit. We also obtain an upper bound on the acceleration along the non-commutative coordinates using the positivity condition on the magnitude of the maximal acceleration in the commutative spacetime. From the Newtonian limit of the geodesic equation and Einstein's equation for linearised gravity, we derive the explicit form of Newton's potential in DFR space-time. By expressing the non-commutative correction term of the maximal acceleration in terms of Newton's potential and applying the positivity condition, we obtain a lower bound on the radial distance between two particles under the gravitational attraction in DFR space-time. We also derive modified uncertainty relation and commutation relation between coordinates and its conjugate, due to the existence of maximal acceleration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.