The hypothesized role of rapid eye movement (REM) sleep, which is rich in dreams, in the formation of new associations, has remained anecdotal. We examined the role of REM on creative problem solving, with the Remote Associates Test (RAT). Using a nap paradigm, we manipulated various conditions of prior exposure to elements of a creative problem. Compared with quiet rest and non-REM sleep, REM enhanced the formation of associative networks and the integration of unassociated information. Furthermore, these REM sleep benefits were not the result of an improved memory for the primed items. This study shows that compared with quiet rest and non-REM sleep, REM enhances the integration of unassociated information for creative problem solving, a process, we hypothesize, that is facilitated by cholinergic and noradrenergic neuromodulation during REM sleep.The night before Easter Sunday of that year I awoke, turned on the light, and jotted down a few notes on a tiny slip of paper. Then I fell asleep again. It occurred to me at 6 o'clock in the morning that during the night I had written down something most important, but I was unable to decipher the scrawl. The next night, at 3 o'clock, the idea returned. It was the design of an experiment to determine whether or not the hypothesis of chemical transmission that I had uttered 17 years ago was correct. I got up immediately, went to the laboratory, and performed a single experiment on a frog's heart according to the nocturnal design.Otto Loewi, 1938 German, Nobel laureate for his work on the chemical transmission of nerve impulses.
The mammalian circadian timing system uses light to synchronize endogenously generated rhythms with the environmental day. Entrainment to schedules that deviate significantly from 24 h (T24) has been viewed as unlikely because the circadian pacemaker appears capable only of small, incremental responses to brief light exposures. Challenging this view, we demonstrate that simple manipulations of light alone induce extreme plasticity in the circadian system of mice. Firstly, exposure to dim nocturnal illumination (<0.1 lux), rather than completely dark nights, permits expression of an altered circadian waveform wherein mice in light/dark/light/dark (LDLD) cycles “bifurcate” their rhythms into two rest and activity intervals per 24 h. Secondly, this bifurcated state enables mice to adopt stable activity rhythms under 15 or 30 h days (LDLD T15/T30), well beyond conventional limits of entrainment. Continuation of dim light is unnecessary for T15/30 behavioral entrainment following bifurcation. Finally, neither dim light alone nor a shortened night is sufficient for the extraordinary entrainment observed under bifurcation. Thus, we demonstrate in a non-pharmacological, non-genetic manipulation that the circadian system is far more flexible than previously thought. These findings challenge the current conception of entrainment and its underlying principles, and reveal new potential targets for circadian interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.