Stable E1 transformed cells, like PER.C6, are able to grow at scale and to high cell densities. E1-deleted adenoviruses replicate to high titer in PER.C6 cells whereas subsequent deletion of E2A from the vector results in absence of replication in PER.C6 cells and drastically lowers the expression of adenovirus proteins in such cells. We therefore considered the use of an DeltaE1/DeltaE2 type 5 vector (Ad5) to deliver genes to PER.C6 cells growing in suspension with the aim to achieve high protein yield. To evaluate the utility of this system we constructed DeltaE1/DeltaE2 vector carrying different classes of protein, that is, the gene coding for spike protein derived from the Coronavirus causing severe acute respiratory syndrome (SARS-CoV), a gene coding for the SARS-CoV receptor or the genes coding for an antibody shown to bind and neutralize SARS-CoV (SARS-AB). The DeltaE1/DeltaE2A-vector backbones were rescued on a PER.C6 cell line engineered to constitutively over express the Ad5 E2A protein. Exposure of PER.C6 cells to low amounts (30 vp/cell) of DeltaE1/DeltaE2 vectors resulted in highly efficient (>80%) transduction of PER.C6 cells growing in suspension. The efficient cell transduction resulted in high protein yield (up to 60 picogram/cell/day) in a 4 day batch production protocol. FACS and ELISA assays demonstrated the biological activity of the transiently produced proteins. We therefore conclude that DeltaE1/DeltaE2 vectors in combination with the PER.C6 technology may provide a viable answer to the increasing demand for high quality, high yield recombinant protein.
The vermilion gene was used as a target to determine the mutational specificity of ethyl methanesulfonate (EMS) in germ cells of Drosophila melanogaster. To study the impact of DNA repair on the type of mutations induced, both excision-repair-proficient (exr+) and excision-repair-deficient (exr-) strains were used for the isolation of mutant flies. In all, 28 mutants from the exr+ strain and 24 from the exr- strain, were characterized by sequence analysis. In two mutants obtained from the exr+ strain, small deletions were observed. All other mutations were caused by single base-pair changes. In two mutants double base-pair substitutions had occurred. Of the mutations induced in the exr+ strain, 22 (76%) were GC----AT transitions, 3 (10%) AT----TA transversions, 2 (6%) GC----TA transversions and 2 (6%) were deletions. As in other systems, the mutation spectrum of EMS in Drosophila is dominated by GC----AT transitions. Of the mutations in an exr- background, 12 (48%) were GC----TA transitions, 7 (28%) AT----TA transversions, 5 (20%) GC----TA transversions and 1 (4%) was a AT----GC transition. The significant increase in the contribution of transversion mutations obtained in the absence of an active maternal excision-repair mechanism, clearly indicates efficient repair of N-alkyl adducts (7-ethyl guanine and 3-ethyl adenine) by the excision-repair system in Drosophila germ cells.
The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.
Wegener's granulomatosis is characterized by crescentic necrotizing glomerulonephritis and systemic vasculitis. Both proteinase 3 (PR3) and anti-neutrophil cytoplasmic antibodies (ANCA), directed against this enzyme, are thought to play a pathogenic role. PR3 has been shown to cause detachment and cytolysis of human umbilical vein endothelial cells (HUVEC) in vitro and to induce apoptosis of bovine pulmonary artery endothelial cells. In the present study we investigated the effect of PR3 and ANCA on the induction of apoptosis of human endothelial cells in vitro. HUVEC were cultured in the absence or presence of varying concentrations of PR3 for different time periods and apoptosis was assessed by three different methods. Staining of the cells with Hoechst 33258 and assessment of nuclear morphology by ultraviolet (UV) light microscopy revealed a dose-dependent induction of apoptosis, as determined by cell counts. A concentration of 8 microg/ml PR3 was found to induce 16% apoptosis after 16 h incubation. Analysis of apoptosis by flow cytometry using the terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick-end labelling (TUNEL) method also demonstrated a dose-dependent induction of apoptosis by PR3. DNA fragmentation was confirmed by agarose gel electrophoresis. To investigate the effect of ANCA on PR3-mediated apoptosis, HUVEC were exposed to immunoglobulin G (IgG) from patients with Wegener's granulomatosis or systemic vasculitis, and from normal controls, in the presence or absence of PR3. Enhancement of PR3-mediated apoptosis was found in two of 10 IgG samples with anti-PR3 activity, whereas a reduction in apoptosis was observed in two others. Anti-MPO (myeloperoxidase)-positive IgG, six additional anti-PR3 positive IgG samples and control IgG samples did not have any detectable effect on apoptosis. These studies suggest that ANCA may modulate the relative degree of injury in some cases of Wegener's granulomatosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.