Three-dimensional (3D) structured-illumination microscopy (SIM) can double the lateral and axial resolution of a wide-field fluorescence microscope but has been too slow for live imaging. Here we apply 3D SIM to living samples and record whole cells at up to 5 s per volume for >50 time points with 120-nm lateral and 360-nm axial resolution. We demonstrate the technique by imaging microtubules in S2 cells and mitochondria in HeLa cells.
Using ultralow light intensities that are well suited for investigating biological samples, we demonstrate whole-cell superresolution imaging by nonlinear structured-illumination microscopy. Structured-illumination microscopy can increase the spatial resolution of a wide-field light microscope by a factor of two, with greater resolution extension possible if the emission rate of the sample responds nonlinearly to the illumination intensity. Saturating the fluorophore excited state is one such nonlinear response, and a realization of this idea, saturated structured-illumination microscopy, has achieved approximately 50-nm resolution on dye-filled polystyrene beads. Unfortunately, because saturation requires extremely high light intensities that are likely to accelerate photobleaching and damage even fixed tissue, this implementation is of limited use for studying biological samples. Here, reversible photoswitching of a fluorescent protein provides the required nonlinearity at light intensities six orders of magnitude lower than those needed for saturation. We experimentally demonstrate approximately 40-nm resolution on purified microtubules labeled with the fluorescent photoswitchable protein Dronpa, and we visualize cellular structures by imaging the mammalian nuclear pore and actin cytoskeleton. As a result, nonlinear structured-illumination microscopy is now a biologically compatible superresolution imaging method.patterned excitation | moiré | subdiffraction
Previous implementations of structured-illumination microscopy (SIM) were slow or designed for one-color excitation, sacrificing two unique and extremely beneficial aspects of light microscopy: live-cell imaging in multiple colors. This is especially unfortunate because, among the resolution-extending techniques, SIM is an attractive choice for live-cell imaging; it requires no special fluorophores or high light intensities to achieve twice diffraction-limited resolution in three dimensions. Furthermore, its wide-field nature makes it lightefficient and decouples the acquisition speed from the size of the lateral field of view, meaning that high frame rates over large volumes are possible. Here, we report a previously undescribed SIM setup that is fast enough to record 3D two-color datasets of living whole cells. Using rapidly programmable liquid crystal devices and a flexible 2D grid pattern algorithm to switch between excitation wavelengths quickly, we show volume rates as high as 4 s in one color and 8.5 s in two colors over tens of time points. To demonstrate the capabilities of our microscope, we image a variety of biological structures, including mitochondria, clathrin-coated vesicles, and the actin cytoskeleton, in either HeLa cells or cultured neurons.extended resolution | frequency mixing | multicolor | patterned excitation F luorescence microscopy allows noninvasive 3D imaging of the interior of living specimens with molecular specificity, and is therefore an invaluable resource to the biological sciences. Unfortunately, the resolving power of fluorescence microscopy is fundamentally limited by the diffraction of light.Lately, many techniques have been introduced to extend the resolution beyond the classic diffraction limit (1-8). Although the improvement of spatial resolution is impressive, the practical impact of these new techniques will largely depend on whether they can keep the two key advantages of fluorescence microscopy, namely, the capability of imaging living cells in three dimensions and multicolor labeling. Live-cell imaging over many time points has been demonstrated for some resolution-extending techniques (9-15) but, to our knowledge, not for multicolor 3D imaging of whole cells.Stimulated emission depletion (STED) microscopy increases the spatial resolution by suppressing the fluorescence emission on the rim of a focused laser spot, theoretically enabling unlimited resolution (16). STED microscopy has been demonstrated for live imaging at high frame rates (12, 15), but its point-scanning nature makes it unsuitable for fast volumetric imaging over large fields of view. Furthermore, to achieve high spatial resolution, very high power densities (38-540 MW/cm 2 ) (12) are necessary for the STED laser beam, which may cause increased photobleaching and phototoxicity, thus limiting the application of live-cell STED microscopy.In localization-based microscopy, only sparse subsets of photoswitchable fluorophores in a sample are imaged at a time, which allows the isolation and precise localizati...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.