Optical cavities can support many transverse and longitudinal modes. A paraxial scalar theory predicts that the resonance frequencies of these modes cluster in different orders. A non-paraxial vector theory predicts that the frequency degeneracy within these clusters is lifted, such that each order acquires a spectral fine structure, comparable to the fine structure observed in atomic spectra. In this paper, we calculate this fine structure for microcavities and show how it originates from various non-paraxial effects and is co-determined by mirror aberrations. The presented theory, which applies perturbation theory to Maxwell's equations with boundary conditions, proves to be very powerful. It generalizes the effective 1-dimensional description of Fabry-Perot cavities to a 3dimensional multi-transverse-mode description. It thereby provides new physical insights in several mode-shaping effects and a detailed prediction of the fine structure in Fabry-Perot spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.