The spatial distribution of the mean velocity in a two-dimensional turbulent wall jet was measured for a variety of nozzle Reynolds numbers. It was determined that the bulk of the flow is self-similar and it depends on the momentum flux at the nozzle and on the viscosity and density of the fluid. The width of the nozzle which was commonly used to reduce these data has no part in the similarity considerations as has already been suggested by Narasimha et al. (1973). This type of self-similarity can be easily applied to determine the skin friction, which can otherwise only be determined with considerable difficulty. It was also shown that the ‘law of the wall’ applies only to the viscous sublayer. The Reynolds stress in the inviscid, inner portion of the flow is not constant thus the assumption of a ‘constant stress layer’ is not applicable. The applicability and universality of the ‘outer scaling law’ (i.e. Coles’ law of the wake) has been verified throughout the inviscid inner portion of the wall jet. The logarithmic velocity distribution cannot be derived by making the usual assumptions based on the constancy of the Reynolds stresses or on the thinness of the logarithmic region relative to the thickness of the inner layer.
The effects of external two-dimensional excitation on the plane turbulent wall jet were investigated experimentally and theoretically. Measurements of the streamwise component of velocity were made throughout the flow field for a variety of imposed frequencies and amplitudes. The present data were always compared to the results generated in the absence of external excitation. Two methods of forcing were used: one global, imposed on the entire jet by pressure fluctuations in the settling chamber and one local, imposed on the shear layer by a small flap attached to the outer nozzle lip. The fully developed wall jet was shown to be insensitive to the method of excitation. Furthermore, external excitation has no appreciable effect on the rate of spread of the jet nor on the decay of its maximum velocity. In fact the mean velocity distribution did not appear to be altered by the external excitation in any obvious manner. The flow near the surface, however, (i.e. for 0 < Y+ < 100) was profoundly different from the unforced flow, indicating a reduction in wall stress exceeding at times 30%. The production of turbulent energy near the surface was also reduced, lowering the intensities of the velocity fluctuations. External excitation enhanced the two-dimensionality and the periodicity of the coherent motion. Spectral analysis and flow visualization suggested that the large coherent structures in this flow might be identified with the most-amplified primary instability modes of the mean velocity profile. Detailed stability analysis confirmed this proposition though not at the same level of accuracy as it did in many free shear flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.