DNA from one cell culture-adapted and two pathogenic strains of Aleutian disease of mink parvovirus (ADV) was molecularly cloned into the vectors pUC18 and pUC19. The DNA from the two pathogenic strains (ADV-Utah I and ADV-Pullman) was obtained from virus purified directly from the organs of infected mink, whereas the DNA from the nonpathogenic ADV-G was derived from cell culture material. The cloned segment from all three viruses represented a 3.55-kilobase-pair BamHI (15 map units) to Hindlll (88 map units) fragment. Detailed physical mapping studies indicated that all three viruses shared 29 of 46 restriction endonuclease recognition sites but that 6 sites unique to the pathogenic strains and 5 sites unique to ADV-G were clustered in the portion of the genome expected to code for structural proteins. Clones from all three viruses directed the synthesis of two ADV-specific polypeptides with molecular weights of approximately 57 and 34 kilodaltons. Both species reacted with sera from infected mink as well as with a monoclonal antibody specific for ADV structural proteins. Because production of these ADV antigens was detected in both pUC18 and pUC19 and was not influenced by isopropyl-lo-D-thiogalactopyranoside (IPTG) induction, their expression was not regulated by the lac promoter of the pUC vector, but presumably by promoterlike sequences found within the ADV DNA. The proteins specified by the clones of ADV-G were 2 to 3 kilodaltons smaller than those of the two pathogenic strains, although the DNA segments were identical in size. This difference in protein molecular weights may correlate with pathogenicity, because capsid proteins of pathogenic and nonpathogenic strains of ADV exhibit a similar difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.