In this work we detail the strategies adopted in the European research project IDEALIST to overcome the predicted data plane capacity crunch in optical networks. In order for core and metropolitan telecommunication systems to be able to catch up with Internet traffic, which keeps growing exponentially, we exploit the elastic optical networks paradigm for its astounding characteristics: flexible bandwidth allocation and reach tailoring through adaptive line rate, modulation formats, and spectral efficiency. We emphasize the novelties stemming from the flex-grid concept and report on the corresponding proposed target network scenarios. Fundamental building blocks, like the bandwidth-variable transponder and complementary node architectures ushering those systems, are detailed focusing on physical layer, monitoring aspects, and node architecture design
The fastest ever 11.25Gb/s real-time FPGA-based optical orthogonal frequency division multiplexing (OOFDM) transceivers utilizing 64-QAM encoding/decoding and significantly improved variable power loading are experimentally demonstrated, for the first time, incorporating advanced functionalities of on-line performance monitoring, live system parameter optimization and channel estimation. Real-time end-to-end transmission of an 11.25Gb/s 64-QAM-encoded OOFDM signal with a high electrical spectral efficiency of 5.625bit/s/Hz over 25km of standard and MetroCor single-mode fibres is successfully achieved with respective power penalties of 0.3dB and -0.2dB at a BER of 1.0 x 10(-3) in a directly modulated DFB laser-based intensity modulation and direct detection system without in-line optical amplification and chromatic dispersion compensation. The impacts of variable power loading as well as electrical and optical components on the transmission performance of the demonstrated transceivers are experimentally explored in detail. In addition, numerical simulations also show that variable power loading is an extremely effective means of escalating system performance to its maximum potential.
Abstract-This paper describes the problematic of filter narrowing effect in the context of next generation elastic optical networks. First, three possible scenarios are introduced: the transition from actual fixed-grid to a flexi-grid network; the generic full flexi-grid network; and a proposal for filterless optical network. Next, we investigate different transmission techniques and evaluate the penalty introduced by the filtering effect when considering: Nyquist WDM, SSB DD-OFDM and symbol-rate variable DP-4QAM. Also, different approaches to compensate for the filter narrowing effect are discussed. Results show that the specific needs per each scenario can be fulfilled by the aforementioned technologies and techniques, or a combination of them, when balancing performance, network reach and cost.Index Terms-Networks, optical communications, elastic optical networks, flexi-grid, WSS. I. INTRODUCTIONThe future adoption of elastic optical network (EON), mainly fostered by the advent of next technologies (e.g., media, HDTV, 5G, Internet of Things, etc.) and backed by the considerable advances of transmission techniques in terms of flexibility and capacity, is heading to undertake new challenges and goals. In fact, when adopting the flexi-grid paradigm [1], optical channels with different bandwidth occupation can coexist within the same fiber. Some of these channels, denominated as super-channels, are wider in frequency and comprise multiple sub-channels transmitted
We demonstrate, for the first time, a secure optical network architecture that combines NFV orchestration and SDN control with quantum key distribution (QKD) technology. A novel time-shared QKD network design is presented as a cost-effective solution for practical networks.
Record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM (OOFDM) transmission is experimentally demonstrated, for the first time, in a simple electro-absorption modulated laser (EML)-based 25 km standard SMF system using intensity modulation and direct detection (IMDD). Adaptively modulated baseband (0-2GHz) and passband (6.125 ± 2GHz) OFDM RF sub-bands, supporting line rates of 10 Gb/s and 9.125 Gb/s respectively, are independently generated and detected with FPGA-based DSP clocked at only 100 MHz and DACs/ADCs operating at sampling speeds as low as 4GS/s. The two OFDM sub-bands are electrically frequency-division-multiplexed (FDM) for intensity modulation of a single optical carrier by an EML. To maximize and balance the signal transmission performance of each sub-band, on-line adaptive features and on-line performance monitoring is fully exploited to optimize key OOFDM transceiver and system parameters, which includes subcarrier characteristics within each individual OFDM sub-band, total and relative sub-band power as well as EML operating conditions. The achieved 19.125 Gb/s over 25 km SMF OOFDM transmission system has an optical power budget of 13.5 dB, and shows almost identical bit error rate (BER) performances for both the baseband and passband signals. In addition, experimental investigations also indicate that the maximum achievable transmission capacity of the present system is mainly determined by the EML frequency chirp-enhanced chromatic dispersion effect, and the passband BER performance is not affected by the two sub-band-induced intermixing effect, which, however, gives a 1.2dB optical power penalty to the baseband signal transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.