Morphological and enzymatic responses in fibers expressing fast, slow, or both types of myosin heavy chain (MHC) were studied in rats after 14 days of spaceflight (COSMOS 2044) or hindlimb suspension. Although the percentage of slow-twitch fibers was unchanged, a higher percentage of fibers that expressed both slow and fast MHC was observed in flight and suspended rats than in synchronous ground-based controls. The soleus was 25 and 34% smaller than control after 14 days of flight and suspension, with the reduction in fiber cross-sectional area (CSA) being greater in slow- than in fast-twitch fibers in both experimental groups. The activities of succinate dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPD) were not significantly affected by flight or suspension. The total SDH activity (i.e., SDH activity x CSA) decreased significantly in the slow-twitch fibers of the flight and the fast-twitch fibers of the suspended rats, in large part due to fiber atrophy. A shift in MHC expression in 14 and 9% of the fibers in flight and suspended rats occurred without a change in myosin adenosinetriphosphatase activity. The SDH and GPD activities of the fibers that expressed both slow and fast MHC were slightly higher than the slow-twitch fibers and slightly lower than the fast-twitch fibers. These data indicate that events were initiated within 14 days of spaceflight or suspension that began to reconfigure the protein profiles of 9-14% of the slow-twitch fibers from typical slow-twitch toward those of fast-twitch fibers, while all fibers were dramatically losing total protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Spaceflight (flight) and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to account for this apparent disagreement. In both experimental conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic and fast-twitch glycolytic fibers. Immunostaining showed that slow-twitch oxidative fibers expressed fast myosin, producing hybrid fibers containing slow and fast myosin isoforms. Two-dimensional gel electrophoresis of flight AL muscles revealed increased content of fast myosin light chains and decreased amounts of slow myosin light chains and fatty acid-binding protein. In the flight AL, absolute mitochondrial content decreased, but the relatively greater breakdown of myofibrillar proteins maintained mitochondrial concentration near normal in the central intermyofibrillar regions of fibers. Subsarcolemmal mitochondria were preferentially lost and reduced below normal concentration. Elevated fiber immunostaining for ubiquitin conjugates was suggestive of ubiquitin-mediated breakdown of myofibrillar proteins. On return to weight bearing for 8-11 h, the weakened atrophic muscles exhibited eccentric contraction-like lesions (hyperextension of sarcomeres with A-band filaments pulled apart and fragmented), tearing of the supporting connective tissue, and thrombosis of the microcirculation. Segmental necrosis of muscle fibers, denervation of neuromuscular junctions, and extravasation of red blood cells were minimal. Lymphocyte antibody markers did not indicate a significant immune reaction. The flight AL exhibited threefold more eccentric-like lesions than the unloaded AL; the high reentry G forces experienced by the flight animals, but not the unloaded group, possibly accounted for this difference. Muscle atrophy appears to increase the susceptibility to form eccentric contraction-like lesions after reloading; this may reflect weakening of the myofibrils and extracellular matrix. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the post-capillary venules and capillaries. This blockage led to edema by 8-11 h after resumption of weight bearing by the COSMOS 2044 rats. The present findings indicate that defective microcirculation most likely accounted for the extensive tissue necrosis and microhemorrhages observed for COSMOS 1887 rats killed 2 days after landing.
Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.
The adaptation of single fibers in medial gastrocnemius (MG), a fast-twitch extensor, and tibialis anterior (TA), a fast-twitch flexor, was studied after 14 days of spaceflight (COSMOS 2044) or hindlimb suspension. Cross-sectional area (CSA) and succinate dehydrogenase (SDH), alpha-glycerophosphate dehydrogenase (GPD), and myofibrillar adenosinetriphosphatase (ATPase) activities were determined in fibers identified in frozen serial cross sections. Fibers were categorized as light, dark, or intermediate on the basis of myosin ATPase staining and alkaline preincubation and immunohistochemically as reacting with slow, fast, or both slow and fast myosin heavy chain monoclonal antibodies. Because there was a close relationship between these two means of categorizing fibers, all fibers were categorized on the basis of the immunohistochemical reaction. The percentage of slow- and fast-twitch fibers of the MG and TA were unchanged in either group. Mean fiber size of all fibers, irrespective of type, was unaffected in either muscle after flight or suspension. The fibers that expressed both fast and slow myosin heavy chains were smaller than control in the MG of both experimental groups. Compared with control, the SDH and total SDH activities in the MG were significantly less in suspended rats, with the fast-twitch fibers showing the largest difference. The ATPase activity in the MG was higher in flight than in control or suspended rats. There were no significant effects of flight on fibers of the TA. In contrast, the TA in suspended rats had higher GPD activities than either control or flight rats.(ABSTRACT TRUNCATED AT 250 WORDS)
The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in control rats. Immunohistochemical changes in the MG were minimal. These data suggest that the magnitude and direction of enzymatic activity and cell volume changes are dependent on the muscle, the region of the muscle, and the type of myosin expressed in the fibers. Further, the ability of fibers to maintain normal or even elevated activities per unit volume of some metabolic enzymes is remarkable considering the marked and rapid decrease in fiber volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.