Lattice dynamics of body-centered cubic (bcc) V b-VIb group transition metals (TM), and B1-type monocarbides and mononitrides of IIIb-VIb transition metals are studied by means of first-principles density functional perturbation theory, ultra soft pseudopotentials, and generalized gradient approximation to the exchange-correlation functional. Ground state parameters of transition metals and their compounds are correctly reproduced with the generated ultrasoft pseudopotentials. The calculated phonon spectra of the bcc metals are in excellent agreement with results of inelastic neutron scattering experiments. We show that the superconductivity of transition metal carbides (TMC) and transition metal nitrides (TMN) is related to peculiarities of the phonon spectra, and the anomalies of the spectra are connected to the number of valence electrons in crystals. The calculated electron-phonon interaction constants for TM, TMC, and TMN are in excellent agreement with experimentally determined values. Phonon spectra for a number of monocarbides and mononitrides of transition metals within the cubic NaCl-and hexagonal W C-type structures are predicted. Ideal stoichiometric B1 crystals of ScC, YC, and VC are predicted to be dynamically stable and superconducting materials. We also conclude that YN is a semiconductor.
We show that magnetic structures involving partial disorder of local magnetic moments on the Mn atoms in (Ga(1)-(x)Mn(x))As lower the total energy, compared to the case of perfect ferromagnetic ordering, when As defects on the Ga sublattice are present. Such magnetic structures are found to be stable for a range of concentrations of As antisites, and this result accounts for the observed magnetic moments and critical temperatures in (Ga(1)-(x)Mn(x))As. We propose an explanation for the stabilization of the partially disordered magnetic structures and conclude that the magnetization and critical temperatures should increase substantially by reducing the number of As antisite defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.