The Maillard reaction is the key process in protein modification during pathologies connected with carbonyl stress. It was shown in system modeling that Maillard reaction interaction of L-lysine (L-lys) with methylglyoxal (MG) led to the formation of compounds reducing methemoglobin (metHb). Under the above conditions and in the presence of S-nitrosoglutathione (GSNO), metHb nitrosylation took place. Processes of metHb reduction and nitrosylation had the lag phase that was dependent on the presence of oxygen (O2) in the reaction mixture. Oxygen interacting with organic free radicals of the Maillard reaction inhibited hemoglobin (Hb) reduction and hence Hb nitrosylation during the first minutes of the reaction. It was also shown that the yield of organic free-radical intermediates of the L-lys with MG was increased in the presence of GSNO and metHb. All effects described could be a result of the formation of active red-ox GSNO derivates in the Maillard reaction. These derivates are probably mediators of one-electron oxidation of dialkylimine by MG. Anion radicals of S-nitrosothiols can function as such mediators.
The assumption was made that intermediates of the Hb glycation reaction play an important role both in vinyl group nitration and in heme iron nitrosylation. Oxygen content in reaction medium is an important factor influencing these processes. These effects can play an important role in pathogenesis of the diseases connected with carbonyl, oxidative and nitrosative stresses.
Leghemoglobin (Lb) is an oxygen-binding plant hemoglobin of legume nodules, which participates in the symbiotic nitrogen fixation process. Another way to obtain Lb is its expression in bacteria, yeasts, or other organisms. This is promising for both obtaining Lb in the necessary quantity and scrutinizing it in model systems, e.g., its interaction with reactive oxygen (ROS) and nitrogen (RNS) species. The main goal of the work was to study how Lb expression affected the ability of Escherichia coli cells to tolerate oxidative and nitrosative stress. The bacterium E. coli with the embedded gene of soybean leghemoglobin a contains this protein in an active oxygenated state. The interaction of the expressed Lb with oxidative and nitrosative stress inducers (nitrosoglutathione, tert-butyl hydroperoxide, and benzylviologen) was studied by enzymatic methods and spectrophotometry. Lb formed NO complexes with heme-nitrosylLb or nonheme iron-dinitrosyl iron complexes (DNICs). The formation of Lb-bound DNICs was also detected by low-temperature electron paramagnetic resonance spectroscopy. Lb displayed peroxidase activity and catalyzed the reduction of organic peroxides. Despite this, E. coli-synthesized Lb were more sensitive to stress inducers. This might be due to the energy demand required by the Lb synthesis, as an alien protein consumes bacterial resources and thereby decreases adaptive potential of E. coli.
Dinitrosyl iron complexes (DNICs) are physiological NO derivatives and account for many NO functions in biology. Polyfunctional dipeptide carnosine (beta-alanyl-L-histidine) is considered to be a very promising pharmacological agent. It was shown that in the system containing carnosine, iron ions and Angeli's salt, a new type of DNICs bound with carnosine as ligand {(carnosine)-Fe-(NO)}, was formed. We studied how the carbonyl compound methylglyoxal influenced this process. Carnosine-bound DNICs appear to be one of the cell's adaptation mechanisms when the amount of reactive carbonyl compounds increases at hyperglycemia. These complexes can also participate in signal and regulatory ways of NO and can act as protectors at oxidative and carbonyl stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.