Three types of modified silicon dioxide nanoparticles (SiO2, 10–20 nm) with additives of epoxy, silane and amino groups, used independently and in combination with the entomopathogenic bacteria Bacillus thuringiensis subsp. morrisoni and fungus Metarhizium robertsii were tested against Colorado potato beetle (Leptinotarsa decemlineata) and cabbage beetles (Phyllotreta spp.). All three nanoparticles were found to have an entomocidal effect on Colorado potato beetle larvae and crucifer flea beetles when ingested. Increased susceptibility of insects to B. thuringiensis or M. robertsii blastospores and their metabolites was shown after exposure to the modified silicon dioxide nanoparticles. The potential of modified silicon dioxide nanoparticles to enhance the efficiency of biopesticides based on the bacteria B. thuringiensis and fungi M. robertsii is considered in the paper.
Experiments on three varieties of Brassica oleracea (white cabbage, red cabbage, and cauliflower) were conducted during the years 2008-2011 in Western Siberia (Russia) to study the influence of host plant on herbivore infestation. The results revealed the evidence of different infestation of white cabbage, red cabbage, and cauliflower by the common herbivores in Western Siberia. Flea beetles as the earliest herbivores preferred to infest white cabbage. Contrary to those herbivores, M. brassicae and P. xylostella larvae infested red cabbage most of all. The latest herbivore of all plants studied, P. brassicae, preferred cauliflower but not red cabbage. The possible contribution of some factors in summary effects observed in the study was discussed. Further studies are being planned in which tritrophic interaction including B. oleracea plant, herbivore, and microbial insecticides should be investigated. These studies will help to develop biological insect control on Brassica oleracea crops in order to supply ecologically safe plant protection.
Data on prevalence, biological and physiological characteristics of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) are presented. Pest damage is described. Reasons causing increase in harmfulness and economic importance of the insect are noted. An increase in the number of generations able to develop during growing season and earlier pest emergence are recorded under conditions of Siberian region. Factors contributing to the insect density dynamics, including plant species and variety, entomophagous arthropods and entomopathogenic microorganisms, have been considered. Range of chemical insecticides recommended for diamondback moth management in Russian Federation has been indicated. An increase in resistance to chemicals and certain entomopathogens in P. xylostella populations in different regions of the world has been recorded. Possibility of pheromone traps exploitation for efficient pest detection and monitoring has been established. Perspectives of novel efficient and safe means of pest density regulation have been defined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.