During summer, reservoir stratification can negatively impact source water quality. Mixing via bubble plumes (i.e., destratification) aims to minimise this. Within Blagdon Lake, a UK drinking water reservoir, a bubble plume system was found to be insufficient for maintaining homogeneity during a 2017 heatwave based on two in situ temperature chains. Air temperature will increase under future climate change which will affect stratification; this raises questions over the future applicability of these plumes. To evaluate bubble-plume performance now and in the future, AEM3D was used to simulate reservoir mixing. Calibration and validation were done on in situ measurements. The model performed well with a root mean squared error of 0.53 ∘C. Twelve future meteorological scenarios from the UK Climate Projection 2018 were taken and down-scaled to sub-daily values to simulate lake response to future summer periods. The down-scaling methods, based on diurnal patterns, showed mixed results. Future model runs covered five-year intervals from 2030 to 2080. Mixing events, mean water temperatures, and Schmidt stability were evaluated. Eight scenarios showed a significant increase in water temperature, with two of these scenarios showing significant decrease in mixing events. None showed a significant increase in energy requirements. Results suggest that future climate scenarios may not alter the stratification regime; however, the warmer water may favour growth conditions for certain species of cyanobacteria and accelerate sedimentary oxygen consumption. There is some evidence of the lake changing from polymictic to a more monomictic nature. The results demonstrate bubble plumes are unlikely to maintain water column homogeneity under future climates. Modelling artificial mixing systems under future climates is a powerful tool to inform system design and reservoir management including requirements to prevent future source water quality degradation.
Artificial mixing is a common drinking water quality management practice used in lakes and reservoirs that aims to prevent stratification, thereby reducing vertical gradients of dissolved oxygen (DO) and temperature to control cyanobacteria blooms (Visser et al., 2016) and soluble manganese concentrations (Ismail et al., 2002;Li et al., 2019). One increasingly common method is the use of top-down surface mixers, where impellers situated near the surface of the water column rotate and push a plume of well-aerated water downward. The plume displaces bottom waters and causes upwelling away from the impeller (Figure 1a), creating a circulation cell (Punnett, 1991). In principle, the circulation of the water column sustains mixed conditions and prevents the development of stratification, maintaining concentrations of DO throughout the water column, and preventing the internal loading of bioavailable nutrients and soluble metals (Wagner, 2015). The advective transport of DO through the water column by artificial circulation facilitates aerobic microbial respiration and minimizes the
With climate change predicted to alter water column stability and mixing across the world’s oceans, a mesocosm experiment was designed to ascertain how a natural phytoplankton community would respond to these changes. As a departure from other mesocosm experiments, we used heating and cooling to produce four different climate-inspired mixing scenarios ranging from well-mixed water columns representative of typical open turbulence (ϵ = 3 x 10-8 m2/s3) through to a quiescent water column with stable stratification (ϵ = 5 x 10-10 m2/s3). This method of turbulence generation is an improvement on previous techniques (e.g., grid, shaker, and aeration) which tend to produce excessive dissipation rates inconsistent with oceanic turbulence observations. Profiles of classical physical parameters used to describe turbulence and mixing (turbulent dissipation rate, buoyancy frequency, turbulent eddy diffusivity, Ozmidov scale) were representative of the profiles found in natural waters under similar mixing conditions. Chlorophyll-a profiles and cell enumeration showed a clear biological response to the different turbulence scenarios. However, the responses of specific phytoplankton groups (diatoms and dinoflagellates) did not conform to the usual expectations: diatoms are generally expected to thrive under convective, turbulent regimes, while dinoflagellates are expected to thrive in converse conditions, i.e., in stable, stratified conditions. Our results suggest that responses to mixing regimes are taxon-specific, with no overwhelming physical effect of the turbulence regime. Rather, each taxon seemed to very quickly reach a given vertical distribution that it managed to hold, whether actively or passively, with a high degree of success. Future studies on the effects of climate change on phytoplankton vertical distribution should thus focus on the factors and mechanisms that combine to determine the specific distribution of species within taxa. Our convection-based mesocosm approach, because it uses a primary physical force that generates turbulence in open waters, should prove a valuable tool in this endeavor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.