Air samples were taken at various locations around The University of Texas at Austin's TRIGA Mark II research reactor and analyzed to determine the concentrations of Ar,Ar, and Xe present. The measured ratio ofAr/Ar and historical records of Ar releases were then utilized to estimate an annual average release rate ofAr from the reactor facility. Using the calculated release rate, atmospheric transport modeling was performed in order to determine the potential impact of research reactor operations on nearby treaty verification activities. Results suggest that small research reactors (∼1 MWt) do not release Ar in concentrations measurable by currently proposed OSI detection equipment.
The prompt gamma activation analysis (PGAA) facility at the Nuclear Engineering Teaching Laboratory at The University of Texas at Austin was utilized to quantify boron concentrations in boron carbide semiconductor films deposited on silicon substrates. Calibration was complicated by the unique and varying sample geometries analyzed. In addition, there was a dearth of solid materials available with quantified boron concentrations having comparable or readily modifiable dimensions to exploit for calibration purposes. Therefore, a novel hybrid comparator method was developed for the quantification of boron utilizing aluminum as an inexpensive and easily machinable reference material. Aluminum samples were manufactured with high tolerances to match the geometry of each sample of interest. Each boron carbide film sample and its congruent aluminum sample were measured in the PGAA system. The measured aluminum responses and relevant nuclear parameters were used to standardize the digitalcommons.unl.edu
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.