Although common bean (Phaseolus vulgaris L.) has a good potential for N 2 fixation, poor nodulation following inoculation, principally under field conditions, has led to increased nitrogen (N) fertilizer use in this crop. In the face of the negative environmental effects of N fertilizer, alternative methods have been studied to minimize the amount to be applied. In this sense, foliar application of molybdenum (Mo) has been cited as a promising method. Several papers show that high bean yields (1,500-2,500 kg ha -1 ), may be obtained in the southeasten region of Brazil, when there is an application of N as side dressing or Mo spray 25 days after plant emergence. A field experiment was carried out to verify the effect of Mo foliar application on nitrogenase and nitrate reductase activities and on bean yield. Treatments included Rhizobium inoculation (with and without), foliar application of Mo 1 Corresponding author.
Specimens of Araucaria angustifolia from a native forest reserve and a reforested area in the State Park of Campos do Jordão were studied to determine the number and diversity of spore populations of arbuscular mycorrhizal fungi (AMF) and root colonization. Six randomly chosen plots (planted with 8- to 12-year-old plants) were delimited, four in the native forest and two in the reforested area. Rhizosphere and root samples were collected during two periods of the year corresponding to the rainy and dry seasons. A greenhouse experiment was set up for multiplication of field propagules (from the native forest and reforested area) for two consecutive generations. Araucaria leaves from the experimental plots were collected during the first sampling for nutrient analysis. Twenty-four AMF taxa were found and percent AM colonization was determined in all plots. Not all AMF species observed in the field were re-isolated through the recovery pot cultures, even after a second cultivation cycle. The foliar nutrient analysis showed higher nutrient levels in plants from the native forest than the reforested area. Generally, spore richness and diversity were highest during the warmer and more humid period and in the native forest plants.
The aim of this work was to assess the effects of N levels and intercropping of two common bean (Phaseolus vulgaris) varieties (Carioca and Rio Tibagi) with maize (Zea mays) on accumulated N, grain yield and biomass of both crops, and nodulation of common bean inoculated or not with Rhizobium. Two field experiments were conducted simultaneously: common bean-maize intercropping and common bean in sole cropping. Intercropping increased common bean nodulation and biomass, mainly with Rhizobium, but mineral N was deleterious to nodulation. Inoculation also increased the Carioca cultivar yield most in sole cropping (+72 %), but N levels did not affect common bean yield in either cultivar. Although intercropping reduced maize grain yield by 17 %, the equivalent yield increased by 31 %, whilst Rhizobium increased it by 11 %. Despite the reduction of maize yield in intercropping, this system was shown to be more economically viable, in particular when common bean was inoculated with Rhizobium.
The utilization of tannery sludge in agricultural areas can be an alternative for its disposal and recycling. Despite this procedure may cause the loss of nitrogen by ammonia volatilization, there is no information about this process in tropical soils. For two years a field experiment was carried out in Rolândia (Paraná State, Brazil), to evaluate the amount of NH(3) volatilization due to tannery sludge application on agricultural soil. The doses of total N applied varied from zero to 1200 kg ha(-1), maintained at the surface for 89 days, as usual in this region. The alkalinity of the tannery sludge used was equivalent to between 262 and 361 g CaCO(3) per kg. Michaelis-Menten equation was adequate to estimate NH(3)-N volatilization kinetics. The relation between total nitrogen applied as tannery sludge and the potentially volatilized NH(3)-N, calculated by the chemical-kinetics equation resulted in an average determination coefficient of 0.87 (P>0.01). In this period, the amount of volatilized NH(3) was more intense during the first 30 days; the time to reach half of the maximum NH(3) volatilization (K(m)) was 13 an 9 days for the first and second experiments, respectively. The total loss as ammonia in the whole period corresponded in average to 17.5% of the total N applied and to 35% of the NH(4)(+)-N present in the sludge. If tannery sludge is to be surface applied to supply N for crops, the amounts lost as NH(3) must be taken into consideration.
Landfill leachates are pollutants rich in ammoniacal N, Na, and K, but land application potentially offers an alternative for recycling these leachate nutrients. We applied landfill leachate corresponding to 0, 110, 220, 330, and 440 kg ha of total N, divided in three applications (July, August, and October 2008), onto the surface of an acidic (pH 5.5-6.0) clay (79% clay) Ultisol and monitored NH volatilization just after applications and microbiological (0-10 cm) and chemical attributes (0-60-cm soil depth) in August 2008, January 2009, and May 2009. Ammonium (up to 30 mg kg), NO (up to 160 mg kg), Na, K (up to 1.1 cmol kg each), and electrical conductivity (up to 1 dS m) increased transiently in soil following applications. Despite >90% of the total leachate N being ammoniacal, NO predominated in the first soil sampling, 14 d after the second application, suggesting fast nitrification, but it decreased in the soil profile thereafter. From 5 to 25% of the total applied N volatilized as NH, with maximum losses within the first 3 d. Applications inhibited (50%) the relative nitrification rate and increased (50%) hot-water-soluble carbohydrates in the soil at the highest rate. No effects were observed on soil microbial biomass C (114-205 mg kg) and activity (5-8 mg CO-C kg d) or on corn grain yields (6349-7233 kg ha). Controlled land application seems to be a viable alternative for landfill leachate management, but NO leaching, NH volatilization, and accumulation of salinizing ions must be monitored in the long term to prevent environmental degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.