The GEO 600 laser interferometer with 600 m armlength is part of a worldwide network of gravitational wave detectors. Due to the use of advanced technologies like multiple pendulum suspensions with a monolithic last stage and signal recycling, the anticipated sensitivity of GEO 600 is close to the initial sensitivity of detectors with several kilometres armlength. This paper describes the subsystems of GEO 600, the status of the detector by September 2001 and the plans towards the first science run.
For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data. r
Space-based optical systems must be made from lightweight materials which can withstand significant acceleration and temperature changes. Materials such as ZERODUR R , ULE R (Ultra Low Expansion material) and silica are all potentially suitable. Depending on the specific requirements of the optical system and the transmissive or reflective nature of the optical layout these materials can be used by themselves or together to fabricate optical benches. The geometrical layouts of these optical systems are often very complicated and the requirements for mechanical stability very stringent, thus jointing components presents a challenge. In this paper we present developments of a novel chemical bonding process, originally invented at Stanford University for bonding silica components for the optical telescope for the Gravity Probe B mission. Colloquially called silicate bonding, this process utilizes hydroxide catalysis to join optical components to optical mounts to obtain high stability whilst accommodating the requirement for precise alignment procedures.PACS numbers: 95.55. Ym, 95.75.Kk,
The Laser Interferometer Gravitational-Wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new Bayesian 90% upper limit is GW ; H 0 / 72 km s À1 Mpc À1 À Á Â Ã 2 < 6:5 ; 10 À5 . This is currently the most sensitive result in the frequency range 51Y150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss the complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.
We present the analysis of between 50 and 100 h of coincident interferometric strain data used to search for and establish an upper limit on a stochastic background of gravitational radiation. These data come from the first LIGO science run, during which all three LIGO interferometers were operated over a 2-week period spanning August and September of 2002. The method of cross correlating the outputs of two interferometers is used for analysis. We describe in detail practical signal processing issues that arise when working with real data, and we establish an observational upper limit on a f Ϫ3 power spectrum of gravitational waves. Our 90% confidence limit is ⍀ 0 h 100 2 р23Ϯ4.6 in the frequency band 40-314 Hz, where h 100 is the Hubble constant in units of 100 km/sec/Mpc and ⍀ 0 is the gravitational wave energy density per logarithmic frequency interval in units of the closure density. This limit is approximately 10 4 times better than the previous, broadband direct limit using interferometric detectors, and nearly 3 times better than the best narrow-band bar detector limit. As LIGO and other worldwide detectors improve in sensitivity and attain their design goals, the analysis procedures described here should lead to stochastic background sensitivity levels of astrophysical interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.