Processing rates, and macroinvertebrate colonisation, of pine needles and birch leaves were studied at eight sites on the river Nethy, a small river system in the Cairngorm region of north-eastern Scotland. Throughout this river system, processing rates were slow for pine (k values 0.0015-0.0034 day -1 ) and medium to fast for birch (k values 0.0085-0.0331 day -1 ). Plecopteran shredders dominated both pine and birch leaf packs during the early part of the experiment while chironomids were more important in the latter stages. It is suggested that the slow processing rate of pine needles could adversely affect the productivity of streams, particularly where needles provide the major allochthonous energy source and retentive features are limited. Forest managers should consider this when creating new pinewoods in treeless areas as it will take many years for the trees to reach a size at which they can effectively contribute retentive features, in the form of woody debris, to streams.
Anthropogenic acidification in SW‐Scotland, from the early 19th Century onwards, led to the extinction of several loch (lake) brown trout (Salmo trutta) populations and substantial reductions in numbers in many others. Higher altitude populations with no stocking influence, which are isolated above natural and artificial barriers and subjected to the greatest effect of acidification, exhibited the least intrapopulation genetic diversity (34% of the allelic richness of the populations accessible to anadromous S. trutta). These, however, were characterised by the greatest interpopulation divergence (highest pairwise D
EST 0.61 and F
ST 0.53 in contemporary samples) based on 16 microsatellite loci and are among the most differentiated S. trutta populations in NW‐Europe. Five lochs above impassable waterfalls, where S. trutta were thought to be extinct, are documented as having been stocked in the late 1980s or 1990s. All five lochs now support self‐sustaining S. trutta populations; three as a direct result of restoration stocking and two adjoining lochs largely arising from a small remnant wild population in one, but with some stocking input. The genetically unique Loch Grannoch S. trutta, which has been shown to have a heritable increased tolerance to acid conditions, was successfully used as a donor stock to restore populations in two acidic lochs. Loch Fleet S. trutta, which were re‐established from four separate donor sources in the late 1980s, showed differential contribution from these ancestors and a higher genetic diversity than all 17 natural loch populations examined in the area. Genetically distinct inlet and outlet spawning S. trutta populations were found in this loch. Three genetically distinct sympatric populations of S. trutta were identified in Loch Grannoch, most likely representing recruitment from the three main spawning rivers. A distinct genetic signature of Loch Leven S. trutta, the progenitor of many Scottish farm strains, facilitated detection of stocking with these strains. One artificially created loch was shown to have a population genetically very similar to Loch Leven S. trutta. In spite of recorded historical supplemental stocking with Loch Leven derived farm strains, much of the indigenous S. trutta genetic diversity in the area remains intact, aside from the effects of acidification induced bottlenecks. Overall genetic diversity and extant populations have been increased by allochthonous stocking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.