We perform molecular dynamics simulations of the orientational ordering on nematic shells delimited by spherocylindrical nanoscopic colloidal particles. We show that under conditions of degenerate planar anchoring, the equilibrium director field structure in these shells exhibits pairs of +1/2 topological defects at the poles of spherical cups in the absence of an external electric field. In addition, a certain number of pairs of ±1/2 defects occurs on the spherical cups far from the poles, thus resulting in a total of eight valence spots. A strong field applied along the main spherocylindrical axis removes the ±1/2 defect pairs while it coalesces the polar ones into a single +1 topological defect. A strong transverse field destroys all defects on the spherical cups but generates four +1/2 defects in the cylindrical part. Therefore, an external field can be used to control the number of valence centers in spherocylindrical nematic shells, thus unveiling their capability of acting as multivalent building blocks for nanophotonic devices.
The present study investigates dumbbell-shaped nematic liquid crystal shells. Using molecular dynamics (MD) simulations, we consider the effects of an external electric field on nematic ordering by computing the average...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.