The axial and radial velocity components w and u, and the concentration c of a Rhodamine 6G dye were measured simultaneously in a turbulent buoyant jet, using laser-Doppler anemometry combined with a recently developed laser-inducedfluorescence concentration measurement technique. These non-intrusive techniques enable measurements in a region of plume motion where conventional probe-based techniques have had difficulties. The results of the study show that the asymptotic decay laws for velocity and concentration of a tracer transported by the flow are verified experimentally in both jets and plumes. The momentum and volume fluxes and the mean dilution factor are determined in dimensionless form as a function of the normalized distance from the flow source. Contradictory results from earlier experimental plume investigations concerning the decay laws of w and c and the plume width ratio bJb, are discussed. The turbulence properties and the transition from momentum-driven jets to buoyancy-driven plumes are presented. The turbulence is found to scale with the mean flow as predicted by dimensional analysis and self-similarity. Buoyancy-produced turbulence is found to transport twice as much tracer as jet turbulence. Although velocity statistics in jets and plumes are found t o be highly self-similar there is a strong disparity in the distribution of tracer concentration in the two flows. This occurs in the time-average mean flows as well as the r.m.s. turbulent quantities. Instantaneous concentration fluctuations are found to exceed time averages by as much as a factor of 3. The experimental results should provide a reasonable basis for validation of computer models of axisymmetric plumes.
The effects of a sharp density interface and a rigid flat plate on oscillating-grid induced shear-free turbulence were investigated experimentally. A two-component laser-Doppler velocimeter was used to measure turbulence intensities in and above the density interface (with matched refractive indices) and near the rigid flat plate. Energy spectra, velocity correlations, and kinetic energy fluxes were also measured. Amplification of the horizontal turbulent velocity, coupled with a sharp reduction in the vertical turbulent velocity, was observed near both the density interface and the flat plate. These findings are in agreement with some previous results pertaining to shear-free turbulence near rigid walls (Hunt & Graham 1978) and near density interfaces (Long 1978). The results imply that, near the density interface, the turbulent kinetic energy in the vertical velocity component is only a small fraction of the total turbulent kinetic energy and indicate that the effects of the anisotropy created by the density interface or the flat plate are confined to the large turbulence scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.