Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and “CES” (human) and “Ces” (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding “P” and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.
The design, synthesis, and biological characterization of an orally active prodrug (3) of gemcitabine are described. Additionally, the identification of a novel co-crystal solid form of the compound is presented. Valproate amide 3 is orally bioavailable and releases gemcitabine into the systemic circulation after passing through the intestinal mucosa. The compound has entered clinical trials and is being evaluated as a potential new anticancer agent.
Platelet aggregation and activation are serious concerns for patients who undergo percutaneous coronary intervention and stent placement. The underlying mechanism of platelet aggregation is mediated through two G protein-coupled P2 receptors, P2Y 1 and P2Y 12 (Gachet, 2001). P2Y 1 activation leads to a transient aggregation, whereas P2Y 12 activation maintains a sustained aggregation. To reduce platelet aggregation, the development of P2Y 12 -selective inhibitors has yielded the thienopyridine prodrugs, which include ticlopidine, clopidogrel (structures available in Farid et al., 2008), and prasugrel ( Fig. 1), a novel thienopyridine currently in clinical development.Although the active metabolites for prasugrel and clopidogrel have equipotency at the P2Y 12 receptor in vitro (Sugidachi et al., 2007), p.o. administered prasugrel is 10 and 100 times more effective on an equal-dose basis in inhibiting platelet aggregation than clopidogrel and ticlopidine, respectively (Niitsu et al., 2005). Clopidogrel and prasugrel differ markedly in the biotransformation pathways leading to their activation. Prasugrel (Fig. 1) has a single dominant metabolic pathway leading to the active metabolite (Farid et al., 2007a). However, clopidogrel has two competing metabolic pathways for the parent compound, with the major pathway leading to the formation of an inactive metabolite, clopidogrel carboxylic acid derivative (Caplain et al., 1999). The clopidogrel carboxylic acid derivative is formed through ester hydrolysis by the human carboxylesterase (hCE) 1 (Tang et al., 2006). The minor pathway in clopidogrel metabolism yielding the active metabolite requires two sequential steps of cytochrome P450 (P450) biotransformation (Kurihara et al., 2005), whereas prasugrel bioactivation requires the hydrolysis of the ester and then oxidation of the formed thiolactone, R-95913 (Farid et al., 2007a) (Fig. 1), to form the active metabolite of prasugrel. The oxidation of R-95913 has been shown to be mediated by several P450 enzymes but primarily by CYP3A and CYP2B6 (Rehmel et al., 2006).The carboxylesterases are a multigene family that hydrolyze compounds containing an ester, amide, or thioester linkage. Carboxylesterases are broadly expressed throughout the body with two major Article, publication date, and citation information can be found at
ABSTRACT:The carboxylesterases (CESs) are a family of serine hydrolases that hydrolyze compounds containing an ester, amide, or thioester. In humans, two dominant forms, CES1 and CES2, are highly expressed in organs of first-pass metabolism and play an important role in xenobiotic metabolism. The current study was conducted to better understand species-related differences in substrate selectivity and tissue expression of these enzymes. To elucidate potential similarities and differences among these enzymes, a series of 4-nitrophenyl esters and a series of gemcitabine prodrugs were evaluated using enzyme kinetics as substrates of expressed and purified CESs from beagle dog, cynomolgus monkey, and human genes. For the substrates examined, human and monkey CES2 more efficiently catalyzed hydrolysis compared with CES1, whereas CES1 was the more efficient enzyme in dog. Quantitative real-time polymerase chain reaction and Western blot analyses indicate that the pattern of CES tissue expression in monkey is similar to that of human, but the CES expression in dog is unique, with no detectable expression of CES in the intestine. Loperamide, a selective human CES2 inhibitor, was also found to be a CES2-selective inhibitor in both dog and monkey. This is the first study to examine substrate specificity among dog, human, and monkey CESs.
Gemcitabine triphosphate (dFdCTP) is a highly active metabolite of gemcitabine. It is formed intra-cellularly via the phosphorylation of gemcitabine by deoxycytidine kinase. The monitoring of dFdCTP in human peripheral blood mononuclear cells (PBMCs), in addition to plasma concentrations of gemcitabine and its metabolite 2',2'-difluorodeoxyuridine, is considered very useful in determining pharmacokinetic-pharmacodynamic relationships. We describe a novel sensitive assay for the quantification of dFdCTP in human PBMCs. The method is based on weak anion-exchange liquid chromatography and detection with tandem mass spectrometry (LC-MS/MS). The assay has been validated from 1 ng/ml (lower limit of quantification, LLOQ) to 25 ng/ml (upper limit of quantification, ULOQ) using 180 microl aliquots of PBMC extracts containing approximately 0.648 mg protein or 3.8 x 10(6) lysed PBMCs. The LLOQ is equivalent to 94 fmol/10(6) cells (1 ng/ml = 0.18 ng/180 microl or 0.18 ng/0.648 mg protein = 0.047 ng/10(6) cells or 94 fmol/10(6) cells). This highly sensitive assay is capable of quantifying about 200-fold lower concentrations of dFdCTP in human PBMCs than currently available methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.