In a clinical study with oral gemcitabine (2 ¶,2 ¶-difluorodeoxycytidine, dFdC), 2 ¶,2 ¶-difluorodeoxyuridine (dFdU) was extensively formed and accumulated after multiple oral dosing. Here, we have investigated the in vitro cytotoxicity, cellular uptake, efflux, biotransformation, and nucleic acid incorporation of dFdC and dFdU. Short-term and long-term cytotoxicity assays were used to assess the cytotoxicity of dFdC and dFdU in human hepatocellular carcinoma HepG2, human lung carcinoma A549, and Madin-Darby canine kidney cell lines transfected with the human concentrative or equilibrative nucleoside transporter 1 (hCNT1 or hENT1), or empty vector. Radiolabeled dFdC and dFdU were used to determine cellular uptake, efflux, biotransformation, and incorporation into DNA and RNA. The compounds dFdC, dFdU, and their phosphorylated metabolites were quantified by high-performance liquid chromatography with UV and radioisotope detection. dFdU monophosphate, diphosphate, and triphosphate (dFdU-TP) were formed from dFdC and dFdU. dFdU-TP was incorporated into DNA and RNA. The area under the intracellular concentration-time curve of dFdC-TP and dFdU-TP and their extent of incorporation into DNA and RNA inversely correlated with the IC 50 of dFdC and dFdU, respectively. The cellular uptake and cytotoxicity of dFdU were significantly enhanced by hCNT1. dFdU inhibited cell cycle progression and its cytotoxicity significantly increased with longer duration of exposure. dFdU is taken up into cells with high affinity by hCNT1 and phosphorylated to its dFdU-TP metabolite. dFdU-TP is incorporated into DNA and RNA, which correlated with dFdU cytotoxicity. These data provide strong evidence that dFdU can significantly contribute to the cytotoxicity of dFdC. [Mol Cancer Ther 2008;7(8):2415-25]
The urothelium is a multifunctional tissue that not only acts as a barrier between the vesical contents of the lower urinary tract and the underlying tissues but also acts as a sensory organ by transducing physical and chemical stresses to the attendant afferent nervous system and underlying smooth muscle. This review will consider the nature of the stresses that the urothelium can transduce; the transmitters that mediate the transduction process; and how lower urinary pathologies, including overactive bladder syndrome, painful bladder syndrome and bacterial infections, are associated with alterations to this sensory system. In particular, the role of muscarinic receptors and the TRPV channels system will be discussed in this context. The urothelium also influences the contractile state of detrusor smooth muscle, both through modifying its contractility and the extent of spontaneous activity; potential pathways are discussed. The potential role that the urothelium may play in bladder underactivity is introduced, as well as potential biomarkers for the condition that may cross the urothelium to the urine. Finally consideration is given to vesical administration of therapeutic agents that influence urinary tract function and how the properties of the urothelium may determine the effectiveness of this mode of delivery.
After completing this course, the reader will be able to:1. Describe the molecular pharmacology of nucleoside analogues.2. Explain transport, metabolism, and elimination in relation to the activity of gemcitabine.3. Describe the clinical pharmacology of gemcitabine in relation to its rate of administration.Access and take the CME test online and receive 1 AMA PRA Category 1 Credit ™ at CME.TheOncologist.com CME CME ABSTRACTGemcitabine is frequently used in the treatment of patients with solid tumors. Gemcitabine is taken up into the cell via human nucleoside transporters (hNTs) and is intracellularly phosphorylated by deoxycytidine kinase (dCK) to its monophosphate and subsequently into its main active triphosphate metabolite 2,2-difluorodeoxycytidine triphosphate (dFdCTP), which is incorporated into DNA and inhibits DNA synthesis. In addition, gemcitabine is extensively deaminated to 2,2-difluorodeoxyuridine, which is largely excreted into the urine. High expression levels of human equilibrative nucleoside transporter type 1 were associated with a significantly longer overall survival duration after gemcitabine treatment in patients with pancreatic cancer.Clinical studies in blood mononuclear and leukemic cells demonstrated that a lower infusion rate of gemcitabine was associated with higher intracellular dFdCTP levels. Prolonged infusion of gemcitabine at a fixed dose rate (FDR) of 10 mg/m 2 per minute was associated with a higher intracellular accumulation of dFdCTP, greater toxicity, and a higher response rate than with the standard 30-minute infusion of gemcitabine in patients with pancreatic cancer.In the current review, we discuss the molecular pharmacology of nucleoside analogues and the influence of hNTs and dCK on the activity and toxicity of gemcitabine, which is the basis for clinical studies on
Gemcitabine triphosphate (dFdCTP) is a highly active metabolite of gemcitabine. It is formed intra-cellularly via the phosphorylation of gemcitabine by deoxycytidine kinase. The monitoring of dFdCTP in human peripheral blood mononuclear cells (PBMCs), in addition to plasma concentrations of gemcitabine and its metabolite 2',2'-difluorodeoxyuridine, is considered very useful in determining pharmacokinetic-pharmacodynamic relationships. We describe a novel sensitive assay for the quantification of dFdCTP in human PBMCs. The method is based on weak anion-exchange liquid chromatography and detection with tandem mass spectrometry (LC-MS/MS). The assay has been validated from 1 ng/ml (lower limit of quantification, LLOQ) to 25 ng/ml (upper limit of quantification, ULOQ) using 180 microl aliquots of PBMC extracts containing approximately 0.648 mg protein or 3.8 x 10(6) lysed PBMCs. The LLOQ is equivalent to 94 fmol/10(6) cells (1 ng/ml = 0.18 ng/180 microl or 0.18 ng/0.648 mg protein = 0.047 ng/10(6) cells or 94 fmol/10(6) cells). This highly sensitive assay is capable of quantifying about 200-fold lower concentrations of dFdCTP in human PBMCs than currently available methods.
Purpose: To determine the toxicity, tolerability, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity of oral gemcitabine (2 ¶,2 ¶-difluorodeoxycytidine; dFdC) in patients with cancer. Experimental Design: Patients with advanced or metastatic cancer refractory to standard therapy were eligible. Gemcitabine was administered p.o. starting at 1 mg once daily using dose escalation with three patients per dose level. Patients received one of two dosing schemes: (a) once daily dosing for 14 days of a 21-day cycle or (b) every other day dosing for 21 days of a 28-day cycle. Pharmacokinetics were assessed by measuring concentrations of dFdC and 2 ¶,2 ¶-difluorodeoxyuridine (dFdU) in plasma and gemcitabine triphosphate in peripheral blood mononuclear cells, and pharmacodynamics by measuring the effect onT-cell proliferation. Results: Thirty patients entered the study. Oral gemcitabine was generally well-tolerated. The maximum tolerated dose was not reached. Mainly moderate gastrointestinal toxicities occurred except for one patient who died after experiencing grade 4 hepatic failure during cycle two. One patient with a leiomyosarcoma had stable disease during 2 years and 7 months. Systemic exposure to dFdC was low with an estimated bioavailability of 10%. dFdC was highly converted to dFdU, probably via first pass metabolism and dFdU had a long terminal half-life (f89 h). Concentrations of dFdCTP in peripheral blood mononuclear cells were low, but high levels of gemcitabine triphosphate, the phosphorylated metabolite of dFdU, were detected. Conclusions: Systemic exposure to oral gemcitabine was low due to extensive first-pass metabolism to dFdU. Moderate toxicity combined with hints of activity warrant further investigation of the concept of prolonged exposure to gemcitabine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.