The problem of identifying the influential spreaders - the important nodes - in a real world network is of high importance due to its theoretical interest as well as its practical applications, such as the acceleration of information diffusion, the control of the spread of a disease and the improvement of the resilience of networks to external attacks. In this paper, we propose a graph exploration sampling method that accurately identifies the influential spreaders in a complex network, without any prior knowledge of the original graph, apart from the collected samples/subgraphs. The method explores the graph, following a deterministic selection rule and outputs a graph sample - the set of edges that have been crossed. The proposed method is based on a version of Rank Degree graph sampling algorithm. We conduct extensive experiments in eight real world networks by simulating the susceptible-infected-recovered (SIR) and susceptible-infected-susceptible (SIS) epidemic models which serve as ground truth identifiers of nodes spreading efficiency. Experimentally, we show that by exploring only the 20% of the network and using the degree centrality as well as the k-core measure, we are able to identify the influential spreaders with at least the same accuracy as in the full information case, namely, the case where we have access to the original graph and in that graph, we compute the centrality measures. Finally and more importantly, we present strong evidence that the degree centrality - the degree of nodes in the collected samples - is almost as accurate as the k-core values obtained from the original graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.