Feature selection plays a significant role in improving the performance of the machine learning algorithms in terms of reducing the time to build the learning model and increasing the accuracy in the learning process. Therefore, the researchers pay more attention on the feature selection to enhance the performance of the machine learning algorithms. Identifying the suitable feature selection method is very essential for a given machine learning task with highdimensional data. Hence, it is required to conduct the study on the various feature selection methods for the research community especially dedicated to develop the suitable feature selection method for enhancing the performance of the machine learning tasks on high-dimensional data. In order to fulfill this objective, this paper devotes the complete literature review on the various feature selection methods for highdimensional data. General TermsLiterature review on feature selection methods, study on feature selection, wrapper-based feature selection, embeddedbased feature selection, hybrid feature selection, filter-based feature selection, feature subset-based feature selection, feature ranking-based feature selection, attribute selection, dimensionality reduction, variable selection, survey on feature selection, feature selection for high-dimensional data, introduction to variable and feature selection, feature selection for classification. KeywordsIntroduction to variable and feature selection, information gain-based feature selection, gain ratio-based feature selection, symmetric uncertainty-based feature selection, subset-based feature selection, ranking-based feature selection, wrapper-based feature selection, embedded-based feature selection, filter-based feature selection, hybrid feature selection, selecting feature from high-dimensional data.
Abstract-The technological growth generates the massive data in all the fields. Classifying these highdimensional data is a challenging task among the researchers. The high-dimensionality is reduced by a technique is known as attribute reduction or feature selection. This paper proposes a genetic algorithm (GA)-based features selection to improve the accuracy of medical data classification. The main purpose of the proposed method is to select the significant feature subset which gives the higher classification accuracy with the different classifiers. The proposed genetic algorithmbased feature selection removes the irrelevant features and selects the relevant features from original dataset in order to improve the performance of the classifiers in terms of time to build the model, reduced dimension and increased accuracy. The proposed method is implemented using MATLAB and tested using the medical dataset with various classifiers namely Naï ve Bayes, J48, and k-NN and it is evident that the proposed method outperforms other methods compared.
Speckle noise is a multiplicative type of noise commonly seen in medical and remote sensing images. It gives a granular appearance that degrades the quality of the recorded images. These speckle noise components need to be mitigated before the image is used for further processing and analysis. This paper presents a novel approach for removing granular speckle noise in gray scale images. We used an efficient multiscale image representation scheme named fast multiscale directional filter bank (FMDFB) along with simple threshold methods such as Vishushrink for image processing. It is a perfect reconstruction framework that can be used for a wide range of image processing applications because of its directionality and reduced computational complexity. The FMDFB-based speckle mitigation is appealing over other traditional multiscale approaches such as wavelets and Contourlets. Our experimental results show that the despeckling performance of the proposed method outperforms the wavelet and Contourlet-based despeckling methods.
In the digital era, cloud computing plays a significant role in scalable resource sharing to carry out seamless computing and information sharing. Securing the data, resources, applications and infrastructure of the cloud is a challenging task among the researchers. To secure the cloud, cloud security controls are deployed in the cloud computing environment. The cloud security controls are roughly classified as deterrent controls, preventive controls, detective controls and corrective controls. Among these, detective controls are significantly contributing for cloud security by detecting the possible intrusions to prevent the cloud environment from the possible attacks. This detective control mechanism is established using intrusion detection system (IDS). The detecting accuracy of the IDS greatly depends on the network traffic data that is employed to develop the IDS using machine-learning algorithm. Hence, this paper proposed a cuckoo optimisation-based method to preprocess the network traffic data for improving the detection accuracy of the IDS for cloud security. The performance of the proposed algorithm is compared with the existing algorithms, and it is identified that the proposed algorithm performs better than the other algorithms compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.