Skeletal muscle lipid droplet-associated proteins (PLINs) are thought to regulate lipolysis through protein-protein interactions on the lipid droplet surface. In adipocytes, PLIN2 [adipocyte differentiation-related protein (ADRP)] is found only on lipid droplets, while PLIN5 (OXPAT, expressed only in oxidative tissues) is found both on and off the lipid droplet and may be recruited to lipid droplet membranes when needed. Our purpose was to determine whether PLIN5 is recruited to lipid droplets with contraction and to investigate the myocellular location and colocalization of lipid droplets, PLIN2, and PLIN5. Rat solei were isolated, and following a 30-min equilibration period, they were assigned to one of two groups: 1) 30 min of resting incubation and 2) 30 min of stimulation (n = 10 each). Immunofluorescence microscopy was used to determine subcellular content, distribution, and colocalization of lipid droplets, PLIN2, and PLIN5. There was a main effect for lower lipid and PLIN2 content in stimulated compared with rested muscles (P < 0.05). Lipid droplet distribution declined exponentially from the sarcolemma to the fiber center in the rested muscles (P = 0.001, r(2) = 0.99) and linearly in stimulated muscles (slope = -0.0023 ± 0.0006, P < 0.001, r(2) = 0.93). PLIN2 distribution declined exponentially from the sarcolemma to the fiber center in both rested and stimulated muscles (P < 0.0001, r(2) = 0.99 rest; P = 0.0004, r(2) = 0.98 stimulated), while PLIN5 distribution declined linearly (slope = -0.0085 ± 0.0009, P < 0.0001, r(2) = 0.94 rest; slope=-0.0078 ± 0.0010, P = 0.0003, r(2) = 0.91 stimulated). PLIN5-lipid droplets colocalized at rest with no difference poststimulation (P = 0.47; rest r(2) = 0.55 ± 0.02, stimulated r(2) = 0.58 ± 0.03). PLIN2-lipid droplets colocalized at rest with no difference poststimulation (P = 0.48; rest r(2) = 0.66 ± 0.02, stimulated r(2) = 0.65 ± 0.02). Contrary to our hypothesis, these results show that PLIN5 is not recruited to lipid droplets with contraction in isolated skeletal muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.