Using the field theoretic renormalization group technique in the second-order (two-loop) approximation the explicit expression for the turbulent vector Prandtl number in the framework of the general A model of passively advected vector field by the turbulent velocity field driven by the stochastic Navier-Stokes equation is found as the function of the spatial dimension d>2. The behavior of the turbulent vector Prandtl number as the function of the spatial dimension d is investigated in detail especially for three physically important special cases, namely, for the passive advection of the magnetic field in a conductive turbulent environment in the framework of the kinematic MHD turbulence (A=1), for the passive admixture of a vector impurity by the Navier-Stokes turbulent flow (A=0), and for the model of linearized Navier-Stokes equation (A=-1). It is shown that the turbulent vector Prandtl number in the framework of the A=-1 model is exactly determined already in the one-loop approximation, i.e., that all higher-loop corrections vanish. At the same time, it is shown that it does not depend on spatial dimension d and is equal to 1. On the other hand, it is shown that the turbulent magnetic Prandtl number (A=1) and the turbulent vector Prandtl number in the model of a vector impurity (A=0), which are essentially different at the one-loop level of approximation, become very close to each other when the two-loop corrections are taken into account. It is shown that their relative difference is less than 5% for all integer values of the spatial dimension d≥3. Obtained results demonstrate strong universality of diffusion processes of passively advected scalar and vector quantities in fully symmetric incompressible turbulent environments.
We consider the antiferromagnetic spin-1/2 Ising model on the recursive tetrahedron lattice on which two elementary tetrahedrons are connected at each site. The model represents the simplest approximation of the antiferromagnetic Ising model on the real three-dimensional tetrahedron lattice which takes into account effects of frustration. An exact analytical solution of the model is found and discussed. It is shown that the model exhibits neither the first-order nor the second-order phase transitions. A detailed analysis of the magnetization of the model in the presence of the external magnetic field is performed and the existence of the magnetization plateaus for low temperatures is shown. All possible ground states of the model are found and discussed. The existence of nontrivial singular ground states is proven and exact explicit expressions for them are found.
Using the field-theoretic renormalization group technique in the two-loop approximation, the influence of helicity (spatial parity violation) on the turbulent vector Prandtl number is investigated in the model of a passive vector field advected by the turbulent helical environment driven by the stochastic Navier-Stokes equation. It is shown that the presence of helicity in the turbulent environment can significantly decrease the value of the turbulent vector Prandtl number by up to 15% of its nonhelical value. This result is compared to the corresponding results obtained recently for the turbulent Prandtl number of a passively advected scalar quantity as well as for the turbulent magnetic Prandtl number of a weak magnetic field in the framework of the kinematic magnetohydrodynamic turbulence. It is shown that the behavior of the turbulent vector Prandtl number as function of the helicity parameter is much closer to the corresponding behavior of the turbulent Prandtl number of the scalar quantity than to the behavior of the turbulent magnetic Prandtl number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.