We study the temperature dependence of dielectric constant (K) and spontaneous polarization (Ps) in the range of −95–200°C. Cubic (C)-tetragonal (T) and T-orthorhombic (O) transitions are observed at 264 and 25°C, respectively. The Curie–Weiss temperature of C-T transition is 249°C, indicating it is first order. X-ray data indicate T-O phase coexistence at 25°C. A singularity in Ps at 25°C and a T-O phase coexistence spanning 25–31°C was observed, wherein Ps increases from 17×10−2C∕m2 at 31°Cto23×10−2C∕m2 25°C. The transition at 25°C appears diffusionless and polymorphic with martensite start and finish temperatures of 31 and 25°C, respectively. The maximum in d33 is 345pC∕N and is attributed to the instability at 25°C, where Ps and K show singularity.
Electromechanical properties of a number of ferroelectric films including PbZrxTi1−xO3(PZT), 0.9PbMg1/3Nb2/3O3–0.1PbTiO3(PMN-PT), and SrBi2Ta2O9(SBT) are investigated using laser interferometry combined with conventional dielectric measurements. Effective electrostriction coefficients of the films, Qeff, are determined using a linearized electrostriction equation that couples longitudinal piezoelectric coefficient, d33, with the polarization and dielectric constant. It is shown that, in PZT films, electrostriction coefficients slightly increase with applied electric field, reflecting the weak contribution of non-180° domains to piezoelectric properties. In contrast, in PMN-PT and SBT films electrostriction coefficients are field independent, indicating the intrinsic nature of the piezoelectric response. The experimental values of Qeff are significantly smaller than those of corresponding bulk materials due to substrate clamping and possible size effects. Electrostriction coefficients of PZT layers are shown to depend strongly on the composition and preferred orientation of the grains. In particular, Qeff of (100) textured rhombohedral films (x=0.7) is significantly greater than that of (111) layers. Thus large anisotropy of the electrostrictive coefficients is responsible for recently observed large piezoelectric coefficients of (100) textured PZT films. Effective electrostriction coefficients obtained by laser interferometry allow evaluation of the electromechanical properties of ferroelectric films based solely on the dielectric parameters and thus are very useful in the design and fabrication of microsensors and microactuators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.