Mountain lee waves are a form of atmospheric gravity wave that is generated by flow over mountain topography. Mountain lee waves are of considerable interest, because they can produce drag that affects the general circulation, windstorms, and clear-air turbulence that can be an aviation hazard, and they can affect ozone abundance through mixing and inducing polar stratospheric clouds. There are difficulties, however, in measuring the three-dimensional wind velocities in high-altitude mountain waves. Mountain waves are routinely used by sailplane pilots to gain altitude. Methods are described for estimating three-dimensional wind velocities in mountain waves using data collected during sailplane flights. The data used are the logged sailplane position and airspeed (sailplane speed relative to the local air mass). An algorithm is described to postprocess this data to estimate the three-dimensional wind velocity along the flight path, based on an assumption of a slowly varying horizontal wind velocity. The method can be applied to data from dedicated flights or potentially to existing flight records used as sensors of opportunity. The methods described are applied to data from a sailplane flight in lee waves of the Sierra Nevada in California. * This work is dedicated to Steve Fossett, a true adventurer.
Airflow over mountainous terrain can produce stationary atmospheric waves in the lee of the mountains that have large vertical air velocities. These waves are used as sources of lift by sailplane pilots. Methods are developed for inverting flight data of airspeed and GPS-derived position to obtain estimates of the vector windspeed in mountain waves. Data from flight path segments with significantly different ground velocities within a region of constant windspeed give a well-determined solution for the windspeed. The methods are applied to flight data from a Perlan Project flight in lee waves of the Sierra Nevada Mountains in California.
The problem of estimating wind velocities from limited flight data recordings is considered, with application to sailplane flights in high-altitude atmospheric mountain waves. Sailplane flight recorders routinely measure only GPS position and the problem is highly underdetermined. The nature of this problem is studied and a maximum a posteriori estimator is developed using prior information on the wind velocity and the sailplane airspeed and heading. The method is tested by simulation and by application to sailplane flight data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.