Loss-of-heterozygosity (LOH) studies have implicated one or more chromosome 11 tumor-suppressor gene(s) in the development of cutaneous melanoma as well as a variety of other forms of human cancer. In the present study, we have identified multiple independent critical regions on this chromosome by use of homozygosity mapping of deletions (HOMOD) analysis. This method of analysis involved the use of highly polymorphic microsatellite markers and statistics to identify regions of hemizygous deletion in unmatched melanoma cell line DNAs. Regions of loss were defined by the presence of an extended region of homozygosity (ERH) at > or =5 adjacent markers and having a statistical probability of < or =.001. Significant ERHs were similar in nature to deletions identified by LOH analyses performed on uncultured melanomas, although a higher frequency of loss (24 [60%] of 40 vs. 16 [34%] of 47) was observed in the cell lines. Overall, six small regions of overlapping deletions (SROs) were identified on chromosome 11 flanked by the markers D11S1338/D11S907 (11p13-15.5 [SRO1]), D11S1344/D11S11385 (11p11.2 [SRO2]), D11S917/D11S1886 (11q21-22.3 [SRO3]), D11S927/D11S4094 (11q23 [SRO4]), AFM210ve3/D11S990 (11q24 [SRO5]), and D11S1351/D11S4123 (11q24-25 [SRO6]). We propose that HOMOD analysis can be used as an adjunct to LOH analysis in the localization of tumor-suppressor genes.
We have previously demonstrated the existence of a melanoma tumor suppressor gene(s) on the long arm of chromosome 11 through suppression of tumorigenicity assays. Although loss of heterozygosity studies also support this ®nding, only a large critical region (44 cM) has been identi®ed to date on 11q22-25. To further localize a tumor suppressor gene(s) within this region, we have now generated and characterized nine melanoma microcell hybrids, each retaining an introduced fragment of 11q. Of the nine hybrids, four were suppressed for tumor formation in nude mice, while ®ve formed tumors at the same rate as the parental melanoma cell line (UACC 903). Molecular analysis of the hybrids with 118 microsatellite markers narrowed the location of a putative suppressor gene to a small (42 Mb) candidate region on 11q23 between the markers D11S1786 and D11S2077 and within the larger region frequently deleted in melanoma tumors and cell lines. While multiple tumor suppressor genes are likely to reside on 11q22-25, the presence of this region in all four suppressed hybrids supports the simplest model that a single locus is responsible for the suppressed phenotype observed in UACC 903.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.