Four men and four women with similar VO2max (56.33 +/- 4.05 and 54.08 +/- 4.27 ml.kg-1.min-1, respectively) exercised up to 3 h at 30% VO2max during heat stress tests (HST) before and after acclimation to dry heat [dry-bulb temperature (Tdb)/wet-bulb temperature (Twb) = 48/25 degrees C]. Rectal (Tre), tympanic sweat on the chest (msw), and total sweat rate (Msw) were recorded. There were no differences in the responses of the women between phases of the menstrual cycle. Tre, Tty, Tsk, and Tdb at the onset of sweating were similar in both sexes before and after acclimation. The nonacclimated men had significantly higher Msw and slower rise in Tre as compared to the nonacclimated women. Following acclimation these differences were no longer evident. Acclimation produced an increase in Msw in both sexes that was characterized by an increase in sweating sensitivity (delta msw/delta Tre). It was concluded that sex alone does not determine responses to heat stress. Consideration should also be given to the relative cardiovascular strain, state of acclimation, and the ambient conditions.
Ten heat-acclimated females exercised seminude on a treadmill at 30% Vo2 max (M=152 W-m-2) under eight air temperatures (Ta) ranging from 30 degrees C to 52 degrees C. Each experiment involved 1 h of fixed and a 2nd h of progressively increasing water vapor pressure (Pw) with either air movement of 1 m-s-1 or still air. The equilibrium values of rectal temperature (Tre), mean skin temperature (Tsk),and heart rate (HR) reached in the 1st h were forced upwards in the 2nd h by the rising Pw. The critical Pw was defined by the Tre inflection point for each Ta. The loci of the critical Pw were used to delineate the thermal limits on the psychrometric chart and were used to derive the effective evaporative coefficient (Ke') applicable to the ambient capacity for evaporative cooling (Emax). The derived Ke' was 17.6 +/- 4.2 W-m-2 (mean +/- SD) for v0.6m-s-1. Isotherms constructed on the basis of the obtained Ké, Tsk, and sweating capacity were higher than the physiologically based Pw limits.
Six essentially hypertensive men (average resting arterial pressure of 150/97 mm Hg) and eight normotensive controls (average resting arterial pressure of 115/73 mm Hg) were tested during 1 h of dynamic leg exercise in a warm environment. The groups were well matched for age, VO2 max, body surface area, weight, and body fat. Environmental conditions were 38 degrees C dry-bulb, 28 degrees C wet-bulb; exercise intensity was approximately 40% VO2 max (85-90 W). There were no significant intergroup differences in core or mean skin temperatures, calculated heat exchange variables, heart, or sweat rates. Blood pressure differences between the groups were maintained (P less than 0.01). The hypertensive group responded with a significantly lower stroke index (P less than 0.01) and cardiac index (P less than 0.01), and a decreased slope of the rise in forearm blood flow (P less than 0.01) due to an higher vascular resistance (P less than 0.01). The combined heat load (M + R + C) presented was not sufficient to override the hypertensives' higher cutaneous vasoconstrictor tone. However, on a practical basis, the hypertensives were able to tolerate exercise in the heat as well as their normotensive counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.