In this work, we extend for the first time the spherically symmetric Schwarzschild and Schwarzschild–De Sitter solutions with a Finsler–Randers-type perturbation which is generated by a covector $$A_\gamma $$
A
γ
. This gives a locally anisotropic character to the metric and induces a deviation from the Riemannian models of gravity. A natural framework for this study is the Lorentz tangent bundle of a spacetime manifold. We apply the generalized field equations to the perturbed metric and derive the dynamics for the covector $$A_\gamma $$
A
γ
. Finally, we find the timelike, spacelike and null paths on the Schwarzschild–Randers spacetime, we solve the timelike ones numerically and we compare them with the classic geodesics of general relativity. The obtained solutions are new and they enrich the corresponding literature.
In this work, we extend the study of Schwarzschi ld–Finsler–Randers (SFR) spacetime previously investigated by a subset of the present authors (Triantafyllopoulos et al. in Eur Phys J C 80(12):1200, 2020; Kapsabelis et al. in Eur Phys J C 81(11):990, 2021). We will examine the dynamical analysis of geodesics which provides the derivation of the energy and the angular momentum of a particle moving along a geodesic of SFR spacetime. This study allows us to compare our model with the corresponding of general relativity (GR). In addition, the effective potential of SFR model is examined and it is compared with the effective potential of GR. The phase portraits generated by these effective potentials are also compared. Finally we deal with the derivation of the deflection angle of the SFR spacetime and we find that there is a small perturbation from the deflection angle of GR. We also derive an interesting relation between the deflection angles of the SFR model and the corresponding result in the work of Shapiro et al. (Phys Rev Lett 92(12):121101, 2004). These small differences are attributed to the anisotropic metric structure of the model and especially to a Randers term which provides a small deviation from GR.
In this article, we study further applications of the Schwarzschild–Finsler–Randers (SFR) model which was introduced in a previous work Triantafyllopoulos et al. (Eur Phys J C 80(12):1200, 2020). In this model, we investigate curvatures and the generalized Kretschmann invariant which plays a crucial role for singularities. In addition, the derived path equations are used for the gravitational redshift of the SFR-model and these are compared with the GR model. Finally, we get some results for different values of parameters of the generalized photonsphere of the SFR-model and we find small deviations from the classical results of general relativity (GR) which may be ought to the possible Lorentz violation effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.