This study investigates superradiant organic dye J-aggregates as a potential new class of aqueous luminophores for electrogenerated chemiluminescence (ECL). Simultaneous cyclic voltammograms (CVs) and ECL transients are obtained from the self-assembled double-walled tubular J-aggregates formed from the amphiphilic cyanine dye 3,3 0 -bis(2-sulfopropyl)-5,5 0 ,6,6 0 -tetrachloro-1,1 0 -dioctylbenzimidacarbocyanine (C8S3) immobilized on glassy carbon electrodes in the presence of the oxidative-reductive coreactant 2-(dibutylamino)ethanol (DBAE). ECL is produced by both the direct oxidation of DBAE at the electrode and the catalytic oxidation of DBAE by the C8S3 J-aggregates. Optimization studies of the DBAE concentration and pH of the electrolyte show the most intense ECL signal was obtained with ∼17 mM DBAE as coreactant (saturated solution in 1 M KNO 3 ) at pH 12.85, an effect of DBAE solubility and pK a . The overlaid ECL spectrum and the fluorescence spectrum were in good agreement, confirming that the ECL emission is associated with the singlet exciton delocalized on the tubular C8S3 J-aggregates. Amphiphilic J-aggregates are promising new systems for ECL applications because of their unique characteristics such as accessible redox chemistry in the aqueous potential window, increased fluorescence emission, and narrow emission lines.
This study investigates pyrolyzed photoresist film (PPF)-based carbon optically transparent electrodes (C-OTEs) for use in electrogenerated chemiluminescence (ECL) studies. Oxidative-reductive ECL is obtained with a well-characterized ECL system, C8S3 J-aggregates with 2-(dibutylamino)ethanol (DBAE) as coreactant. Simultaneous cyclic voltammograms (CVs) and ECL transients are obtained for three thicknesses of PPFs and compared to nontransparent glassy carbon (GC) and the conventional transparent electrode indium tin oxide (ITO) in both front face and transmission electrode cell geometries. Despite positive potential shifts in oxidation and ECL peaks, attributed to the internal resistance of the PPFs that result from their nanoscale thickness, the PPFs display similar ECL activity to GC, including the low oxidation potential (LOP) observed for amine coreactants on hydrophobic electrodes. Reductive-oxidative ECL was obtained using the well-studied ECL luminophore Ru(bpy)(3)(2+), where the C-OTEs outperformed ITO because of electrochemical instability of ITO at very negative potentials. The C-OTEs are promising electrodes for ECL applications because they yield higher ECL than ITO in both oxidative-reductive and reductive-oxidative ECL modes, are more stable in alkaline solutions, display a wide potential window of stability, and have tunable transparency for more efficient detection of ECL.
This study investigates electrogenerated graphitic oxides (EGO) on the surface of carbon optically transparent electrodes (C-OTEs) using a combined UV-vis spectroelectrochemical approach. By monitoring the π-π* aromatic carbon transition for reduced GO (270 nm) and GO (230 nm), we observe the growth of GO in KCl upon applying oxidizing potentials. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS) are used to confirm sample composition and location of salt ions within the electrode. Formation of EGO stable enough to be observed by UV-vis is found to be unique to alkali chloride supporting electrolytes due to formation of a solid-electrolyte interphase (SEI) which incorporates the alkali cation to stabilize the negatively charged oxygen functional groups while the presence of chloride anion acts as a passivation agent that protects the electrode surface from dissolution. The spectroelectrochemical approach highlights the detection and study of EGO that cannot be detected by electrochemical measurements. Specifically, the amount of EGO observed by UV-vis scales with increasing cation size (Li(+), Na(+), K(+)) despite all the cations showing identical electrochemical response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.