Statins reduce cholesterol, prevent cardiovascular disease, and are among the most commonly prescribed medications in the world. Statin‐associated musculoskeletal symptoms (SAMS) impact statin adherence and ultimately can impede the long‐term effectiveness of statin therapy. There are several identified pharmacogenetic variants that impact statin disposition and adverse events during statin therapy. SLCO1B1 encodes a transporter (SLCO1B1; alternative names include OATP1B1 or OATP‐C) that facilitates the hepatic uptake of all statins. ABCG2 encodes an efflux transporter (BCRP) that modulates the absorption and disposition of rosuvastatin. CYP2C9 encodes a phase I drug metabolizing enzyme responsible for the oxidation of some statins. Genetic variation in each of these genes alters systemic exposure to statins (i.e., simvastatin, rosuvastatin, pravastatin, pitavastatin, atorvastatin, fluvastatin, lovastatin), which can increase the risk for SAMS. We summarize the literature supporting these associations and provide therapeutic recommendations for statins based on SLCO1B1, ABCG2, and CYP2C9 genotype with the goal of improving the overall safety, adherence, and effectiveness of statin therapy. This document replaces the 2012 and 2014 Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for SLCO1B1 and simvastatin‐induced myopathy.
Carboxylesterase 1 (CES1) hydrolyzes the prodrug clopidogrel to an inactive carboxylic acid metabolite. We studied the pharmacokinetics and pharmacodynamics of 600 mg oral clopidogrel in healthy white volunteers, including 10 carriers and 12 noncarriers of CES1 c.428G>A (p.Gly143Glu, rs71647871) single nucleotide variation (SNV). Clopidogrel carboxylic acid to clopidogrel area under the plasma concentration-time curve from 0 hours to infinity (AUC0-∞ ) ratio was 53% less in CES1 c.428G>A carriers than in noncarriers (P = 0.009), indicating impaired hydrolysis of clopidogrel. Consequently, the AUC0-∞ of clopidogrel and its active metabolite were 123% (P = 0.004) and 67% (P = 0.009) larger in the c.428G>A carriers than in noncarriers. Consistent with these findings, the average inhibition of P2Y12 -mediated platelet aggregation 0-12 hours after clopidogrel intake was 19 percentage points higher in the c.428G>A carriers than in noncarriers (P = 0.036). In conclusion, the CES1 c.428G>A SNV increases clopidogrel active metabolite concentrations and antiplatelet effects by reducing clopidogrel hydrolysis to inactive metabolites.
Bioactivation of the antiviral agent oseltamivir to active oseltamivir carboxylate is catalyzed by carboxylesterase 1 (CES1). After the screening of 860 healthy Finnish volunteers for the CES1 c.428G>A (p.Gly143Glu, rs121912777) polymorphism, a pharmacokinetic study with 75 mg oseltamivir was carried out in c.428G>A carriers and noncarriers. Heterozygous c.428GA carriers (n = 9) had 18% larger values of oseltamivir area under the plasma concentration-time curve from 0 h to infinity (AUC(0-∞)) (P = 0.025) and 23% smaller carboxylate-to-oseltamivir AUC(0-∞) ratio (P = 0.006) than noncarriers (n = 12). This shows that the CES1 c.428G>A polymorphism impairs oseltamivir bioactivation in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.