License plate recognition (LPR) algorithms in images or videos are generally composed of the following three processing steps: 1) extraction of a license plate region; 2) segmentation of the plate characters; and 3) recognition of each character. This task is quite challenging due to the diversity of plate formats and the nonuniform outdoor illumination conditions during image acquisition. Therefore, most approaches work only under restricted conditions such as fixed illumination, limited vehicle speed, designated routes, and stationary backgrounds. Numerous techniques have been developed for LPR in still images or video sequences, and the purpose of this paper is to categorize and assess them. Issues such as processing time, computational power, and recognition rate are also addressed, when available. Finally, this paper offers to researchers a link to a public image database to define a common reference point for LPR algorithmic assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.