Activation of the transcription factor CREB is thought to be important in the formation of long-term memory in several animal species. The phosphorylation of a serine residue at position 133 of CREB is critical for activation of CREB. This phosphorylation is rapid when driven by brief synaptic activity in hippocampal neurons. It is initiated by a highly local, rise in calcium ion concentrations near the cell membrane, but culminates in the activation of a specific calmodulin-dependent kinase known as CaMK IV, which is constitutively present in the neuronal nucleus. It is unclear how the signal is conveyed from the synapse to the nucleus. We show here that brief bursts of activity cause a swift (approximately 1 min) translocation of calmodulin from the cytoplasm to the nucleus, and that this translocation is important for the rapid phosphorylation of CREB. Certain Ca2+ entry systems (L-type Ca2+ channels and NMDA receptors) are able to cause mobilization of calmodulin, whereas others (N- and P/Q-type Ca2+ channels) are not. This translocation of calmodulin provides a form of cellular communication that combines the specificity of local Ca2+ signalling with the ability to produce action at a distance.
Abstract-Abnormal calcium cycling, characteristic of experimental and human heart failure, is associated with impaired sarcoplasmic reticulum calcium uptake activity. This reflects decreases in the cAMP-pathway signaling and increases in type 1 phosphatase activity. The increased protein phosphatase 1 activity is partially due to dephosphorylation and inactivation of its inhibitor-1, promoting dephosphorylation of phospholamban and inhibition of the sarcoplasmic reticulum calcium-pump. Indeed, cardiac-specific expression of a constitutively active inhibitor-1 results in selective enhancement of phospholamban phosphorylation and augmented cardiac contractility at the cellular and intact animal levels. Furthermore, the -adrenergic response is enhanced in the transgenic hearts compared with wild types. On aortic constriction, the hypercontractile cardiac function is maintained, hypertrophy is attenuated and there is no decompensation in the transgenics compared with wild-type controls. Notably, acute adenoviral gene delivery of the active inhibitor-1, completely restores function and partially reverses remodeling, including normalization of the hyperactivated p38, in the setting of pre-existing heart failure. Thus, the inhibitor 1 of the type 1 phosphatase may represent an attractive new therapeutic target. Key Words: protein phosphatase 1 Ⅲ protein phosphatase 1 inhibitor 1 Ⅲ heart failure Ⅲ hypertrophy Ⅲ phospholamban Ⅲ gene therapy R eversible protein phosphorylation represents the cellular basis for integration of key signaling pathways, mediating a fine crosstalk between external effector molecules and intracellular events. In the heart, Ca 2ϩ cycling and contractility are controlled by a fine balance of protein kinase and phosphatase activities in response to various second messenger signals. Demands on the heart's pumping action, during fight-or-flight situations, can increase human cardiac output by nearly 5-fold. This is linked to -adrenergic activation of the cAMP dependent protein kinase (PKA). PKA then phosphorylates a set of key regulatory Ca 2ϩ handling proteins that control excitation-contraction coupling cycle, such as phospholamban, the ryanodine receptor, the L-type Ca 2ϩ channel, and troponin I. 1 The protein kinases and their phosphoprotein substrates underlying augmentation of the heart's pumping action have been well characterized. However, similar studies on the protein phosphatases, reversing the increased cardiac contractility, are less well developed. The major Ser/Thr phosphatases [type 1, type 2A, and type 2B (calcineurin)] stem from a common gene family and are highly homologous proteins (40% to 50%) that play critical roles in the control of cardiac contractility and hypertrophy.Overexpression of the catalytic subunit of the protein phosphatase 1 at similar levels observed in human heart failure was associated with dephosphorylation of phospholamban, depressed cardiac function, dilated cardiomyopathy, and premature mortality. 2 Furthermore, PP2A and PP2B (calcineurin) overexpressio...
The nuclear localization and transcriptional activity of the NF-ATc family of transcription factors, essential to many developmental, differentiation, and adaptation processes, are determined by the opposing activities of the phosphatase calcineurin, which promotes nuclear accumulation of NF-ATc, and several kinases, which promote cytoplasmic accumulation. Many reports suggest that protein kinase A (PKA) negatively modulates calcineurin-mediated NF-ATc activation. Here we show that overexpression of PKA causes phosphorylation and cytoplasmic accumulation of NF-ATc1 in direct opposition to calcineurin by phosphorylating Ser-245, Ser-269, and Ser-294 in the conserved serine-proline repeat domain, and that mutation of these serines blocks the effect of PKA. Activation of endogenous PKA is similarly able to promote phosphorylation of these sites on NFATc1 in two lymphoid cell lines. We further show that a complete block of NF-ATc1 nuclear localization by PKA requires a second kinase activity that can be supplied by glycogen synthase kinase-3 (GSK-3), and that mutation of either the PKA phosphorylation sites or the upstream GSK-3 sites prevents the effect of PKA. Thus, we propose that PKA functions cooperatively as a priming kinase for further phosphorylation by GSK-3 to oppose calcineurin-mediated nuclear accumulation and transcriptional activity of NF-ATc1 and that, through this mechanism, PKA may be an important modulator of many NF-ATc-dependent processes.
Translocation of protein kinases with broad substrate specificities between different subcellular compartments by activation of signaling pathways is an established mechanism to direct the activity of these enzymes toward particular substrates. Recently, we identified two isoforms of Ca 2؉ /calmodulin-dependent protein kinase II (CaM kinase II), which are targeted to the nucleus by an alternatively spliced nuclear localization signal (NLS). Here we report that cotransfection with constitutively active mutants of CaM kinase I or CaM kinase IV specifically blocks nuclear targeting of CaM kinase II as a result of phosphorylation of a Ser immediately adjacent to the NLS of CaM kinase II. Both CaM kinase I and CaM kinase IV are able to phosphorylate this Ser residue in vitro, and mutagenesis studies suggest that this phosphorylation is both necessary and sufficient to block nuclear targeting. Furthermore, we provide experimental evidence that introduction of a negatively charged residue at this phosphorylation site reduces binding of the kinase to an NLS receptor in vitro, thus providing a mechanism that may explain the blockade of nuclear targeting that we have observed in situ.Phosphorylation and dephosphorylation reactions control a myriad of signal transduction processes within the cell including cell growth and differentiation, metabolic pathways, and gene expression. The specificity of some kinases mediating these reactions is attained by a strict substrate specificity that limits the action of these dedicated kinases to a single or limited number of potential targets. Other kinases, however, are able to phosphorylate a large number of proteins in vitro, so the in vivo specificity of these kinases must occur through a different mechanism. Examples of these multifunctional or general protein kinases include protein kinase A, protein kinase C, and the Ca 2ϩ /calmodulin-dependent protein kinase (CaM kinase) 1 family consisting of CaM kinase I, CaM kinase II, and CaM kinase IV (reviewed in Refs. 1 and 2). All of these kinases are able to phosphorylate nuclear transcription factors in vitro at sites that either activate or repress gene expression and so all of these kinases have the capacity, at least theoretically, to alter cellular phenotype through changes in protein expression. Over the past decade, the evidence that this actually occurs in vivo is becoming increasingly strong; for example, there is now abundant evidence that protein kinase A mediates activation of the cyclic AMP response element-binding protein through phosphorylation of a key Ser residue (3, 4).Nuclear localization of a kinase is necessary for phosphorylation of nuclear proteins such as transcription factors, although there are examples of transcription factors that are activated in the cytoplasm and then translocate to the nucleus (5, 6). The ability of the catalytic subunit of protein kinase A to be released from cytoplasmic tethering and then passively diffuse into the nucleus, where it can phosphorylate nuclear proteins such as cyclic AMP ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.