The need of strengthening reinforced concrete columns, due to loss of strength and/or stiffness, is an essential requirement due to variation of the loads and environmental conditions applied on these columns. Steel jackets around the reinforced concrete (RC) columns are usually made by means of steel plates covering all over the column surface area. For the value of engineering purposes, another technique was developed using steel angles at the corners of the RC columns connected with discrete steel strips. In this paper, an experimental program is designed to evaluate the improvement in loadcarrying capacity, stiffness and ductility of strengthened RC columns, concomitant with steel angles and strips. Despite of prevailing a substantially increased loading capacity and strength a pronounced enhancement in ductility and stiffness has been reported. A need for experimental test results with low value of concrete strength to mimic the local old-age structures condition that required strengthening in local countries. Seven columns specimens are tested to evaluate the strength improvement provided by steel strengthening of columns. The method of strengthened steel angles with strips is compared with another strengthening technique. This technique includes connected and unconnected steel-casing specimens. The observed experimental results describe load-shortening curves, horizontal strains in stirrups and steel strips, as well as description of failure mode. The extra-confinement pressure, due to existence of steel cage, of the strengthened RC column can be also observed from experimental results. The code provisions that predict the load-carrying capacity of the strengthened RC composite column has a discrepancy in the results. For this reason, an analytical model is developed in this paper to compare the code limit with experimental observed results. The proposed model accounts for the composite action for concrete confinement and enhancement of the local buckling of steel elements. This adopted model is simplified and applicable to practical design field. In this respect, the experimental results and those of the analytical model showed a good agreement.
Research significanceThis paper intended to perform an experimental investigation to examine the enhancement of strengthened RC columns, using steel angles and strips. The code provisions that predict the load-carrying capacity of the strengthened RC composite column has a discrepancy in the results. A need was required for experimental studies to compare the analytical model with the code limit. Thus, seven specimens have been developed to investigate the load-carrying capacity, stiffness and strength enhancement of the strengthened columns. The experimental results quietly addressed the load-shortening curve, horizontal strains in stirrups and strips. A comparison between strengthened RC column with steel angles and strips with those columns strengthened with steel-casing was developed. The obtained experimental results were compared with the code limi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.