We review recent studies of the evolution of collective excitations in atomic nuclei far from the valley of β-stability. Collective degrees of freedom govern essential aspects of nuclear structure, and for several decades the study of collective modes such as rotations and vibrations has played a vital role in our understanding of complex properties of nuclei. The multipole response of unstable nuclei and the possible occurrence of new exotic modes of excitation in weakly-bound nuclear systems, present a rapidly growing field of research, but only few experimental studies of these phenomena have been reported so far. Valuable data on the evolution of the lowenergy dipole response in unstable neutron-rich nuclei have been gathered in recent experiments, but the available information is not sufficient to determine the nature of observed excitations. Even in stable nuclei various modes of giant collective oscillations had been predicted by theory years before they were observed, and for that reason it is very important to perform detailed theoretical studies of the evolution of collective modes of excitation in nuclei far from stability. We therefore discuss the modern theoretical tools that have been developed in recent years for the description of collective excitations in weakly-bound nuclei. The review focuses on the applications of these models to studies of the evolution of low-energy dipole modes from stable nuclei to systems near the particle emission threshold, to analyses of various isoscalar modes, those for which data are already available, as well as those that could be observed in future experiments, to a description of charge-exchange modes and their evolution in neutron-rich nuclei, and to studies of the role of exotic low-energy modes in astrophysical processes.
Large-scale QRPA calculations of the E1 strength are performed on top of HFB calculations in order to derive the radiative neutron capture cross sections for the whole nuclear chart. The spreading width of the GDR is taken into account by analogy with the second-RPA (SRPA) method. The accuracy of HFB+QRPA model based on various Skyrme forces with different pairing prescription and parameterization is analyzed. It is shown that the present model allows to constrain the effective nucleon-nucleon interaction with the GDR data and to provide quantitative predictions of dipole strengths.
Large-scale QRPA calculations of the E1-strength are performed as a first attempt to microscopically derive the radiative neutron capture cross sections for the whole nuclear chart. A folding procedure is applied to the QRPA strength distribution to take the damping of the collective motion into account. It is shown that the resulting E1-strength function based on the SLy4 Skyrme force is in close agreement with photoabsorption data as well as the available experimental E1 strength at low energies. The increase of the E1-strength at low energies for neutron-rich nuclei is qualitatively analyzed and shown to affect the corresponding radiative neutron capture cross section significantly. A complete set of E1-strength function is made available for practical applications in a table format for all 8 ≤ Z ≤ 110 nuclei lying between the proton and the neutron drip lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.