Plasma-based treatment of chronic wounds or skin diseases as well as tissue engineering or tumor treatment is an extremely promising field. First practical studies are promising, and plasma medicine as an independent medical field is emerging worldwide. While during the last years the basics of sterilizing effects of plasmas were well studied, concepts of tailor-made plasma sources which meet the technical requirements of medical instrumentation are still less developed. Indeed, studies on the verification of selective antiseptic effects of plasmas are required, but the development of advanced plasma sources for biomedical applications and a profound knowledge of their physics, chemistry, and parameters must be contributed by physical research. Considering atmospheric-pressure plasma sources, the determination of discharge development and plasma parameters is a great challenge, due to the high complexity and limited diagnostic approaches. This contribution gives an overview on plasma sources for therapeutic applications in plasma medicine. Selected specific plasma sources that are used for the investigation of various biological effects are presented and discussed. Furthermore, the needs, prospects, and approaches for its characterization from the fundamental plasma physical point of view will be discussed.
Plasma treatment reduced contact angle and supported spreading of osteoblastic cells. The application of cold plasma may be supportive in the treatment of peri-implant lesions and may improve the process of re-osseointegration.
The aim of the study was to test the efficacy of a hand‐held atmospheric pressure plasma jet (APPJ) toward typical wound pathogens in vitro simulating antisepsis on wound surfaces. The plasma jet has been proved to be highly effective in vitro against the most commonly encountered pathogenic species of acute and chronic wounds reaching nearly the power of antiseptics. The following bacteria and fungi were treated on half rigid media (agar) imitating wound colonization: methicillin‐sensitive Staphylococcus aureus ATCC 1924 (MSSA), Enterococcus faecium ATCC 6057 (EF), Pseudomonas aeruginosa ATCC 15442 (PA), Candida albicans ATCC 10231 (CA), and β‐hemolyzing Streptococci of the Lancefield serogroup A (HSA). Highest reduction factor (RF) was obtained treating PA (RF 4.0) followed by HSA (3.2), MSSA (2.7), CA (2.0), and EF (1.9). Consequently, simulating wound surfaces with moist environment using semisolid agar media, the APPJ allowed bactericidal treatment of highly contaminated surfaces of 55 cm2 imitating skin and wound colonization within 6 min. This antibacterial reduction power together with its handsome flexibility of the APPJ could be a suited therapeutic option in the therapy of infected or colonized wounds.
The technological potential of non-thermal plasmas for the antimicrobial treatment of heat sensitive materials is well known. Despite a multitude of scientific activities with considerable progress within the last few years, the realization of industrial plasma-based decontamination or sterilization technology remains a great challenge. This may be due to the fact that an antimicrobial treatment process needs to consider all properties of the product to be treated as well as the requirements of the complete procedure, e.g. a reprocessing cycle of medical instruments. The aim of this work is to demonstrate the applicability of plasma-based processes for the antimicrobial treatment on selected heat sensitive products. The strategy is to use modular, selective and miniaturized plasma sources, which are driven at atmospheric pressure and adaptable to the products to be treated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.