Differential scanning calorimetry (DSC) was applied to estimate the impact of the toxic oxidant potassium permanganate (PM) on the intracellular structural and functional alterations at whole cell level using soil bacteria Arthrobacter oxydans as a model culture. Differential scanning calorimetry (DSC) was applied in order to estimate the impact of the toxic oxidant potassium permanganate (PM) on the intracellular structural and functional alterations at the whole cell level using the soil bacteria Arthrobacter oxydans as a model culture. We compared the total melting heat and the temperature of DNA-protein complex (DNP) melting at the PM application prior to the calorimetry measurement and after 24-h exposure at the concentration range 0.02–1.4 mM. The initial oxidative effect caused changes in the pattern of the whole cell melting spectra (mainly at the temperature range 56–78°C), the decrease of Tmax °C DNP melting, and did not influence significantly the total heat of bacterial melting at different concentrations of PM. The prolonged effect of permanganate up to 24 h was characterized by a biphasic dose-dependent response to stress estimated by the DSC technique and the colony-forming assay. The low doses of PM (0.02 and 0.2 mM) stimulated cell proliferation, and increased the total whole cell melting heat and the temperature of DNP melting. The toxic effect of PM up to 0.04 mM reduced cell viability, changed the character of multipeaked thermograms, and lowered the total melting heat and the temperature of DNP melting in a concentration-dependent manner. This study presents the DSC method for evaluating and monitoring the effects of exposure to potential human and environmental toxicants.
It is known that at low concentrations of TMPyP4, this porphyrin predominantly intercalates between GC pairs at GC-rich sites of duplex DNA and G-quadruplexes of various constructions, and stabilizes these structures. However, there are still some arguable suggestions about the exact binding sites and modes of TMPyP4 to GC-rich regions of DNA in case of helation of divalent ions with help of the porphrin, which makes porphyrin structure asymmetric. We examined TOEPyP4-analogue of TMPyP4-and studied interaction of TOEPyP4 into the calf thymus DNA at presence of nanomole concentrations of one of the most important microelements in cell vital function-Zn ion. On the basis of CD and absorption spectra of the DNA-TOEPyP4 mixture, it was determined that nanomole concentrations of Zn ions changed porphyrin intercalative binding mode to some external binding modes, which initiated transition of the canonic B conformation of DNA into C-like conformation, and incubation of the (DNA-TOEP4) + Zn mixture at 37˚C caused B-Z-like transition, but no transition was observed for the DNA-TOEPyP4 mixture. In particular, at 10 mM·NaCl, TOEPyP4/DNA = 0.02, the binding mode change was observed in the concentration range from 150 to 300 nM·Zn, and the B-C-like transition occurred from 150 to 600 nM·Zn. The B-Z transition at TOEPyP4/DNA = 0.015, Zn/DNA = 0.015, NaCI 10 mM, T = 37˚C was observed within incubation time interval from 0.3 to 20 hours, and maximal percents of Z-like form was seen when incubation time interval was from 5 to 6 hours.
In the present study, the antioxidant capacity of chromium-treated L-41 (human epithelial-like cells) was investigated by the ESR spin-trapping technique. The crude cell extracts of the cells grown in the presence of 2 µM (nontoxic) and 20 µM (toxic) chromium (VI) concentrations were tested in the model Fenton system with and without catalase-inhibitor sodium azide. The presented approach using the ESR technique along with inhibitors lets us discern cell extract defense capacity connected with the enzymatic activity in viable cells and the catabolic activity in dying cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.