Arthrobacter species is of interest because of its high potential for bioremediation. Bacteria can detoxify chromium, by either reduction or accumulation inside the bacteria and/or absorption of chromium(VI) (CrVI) on their surface, and efflux pump. The possible pathway of Cr(VI) reduction by Arthrobacter oxydans isolated from Columbia basalt rocks at a US DOE highly contaminated site (USA) has been considered in the present study. FTIR absorption spectroscopy showed that these bacteria reduce Cr(VI). In the present study the threshold Cr(VI) nontoxic concentration (35 microg/mL) for A. oxydans growing in liquid medium was estimated. Complete uptake of this concentration was achieved in about 10 days after chromium addition into the medium. At this concentration an increase in the protein isolated from the cell wall of A. oxydans was observed. This increased protein predominated independently of the growth phase at which Cr(VI) was added. Thermal analysis was used to identify any influence of Cr(VI) on the DNP complex of A. oxydans. According to the data obtained it can be supposed that Cr(VI) reduction predominantly occurs on the bacterial surface and that cell wall represents a permeable barrier for these bacteria at the non-toxic chromium action.
The changes in glutathione-dependent cycle enzymes and catalase activities under Cr(VI)-induced oxidative stress were investigated in two distinct cell lines: L-41-human epithelial-like cells and HLF-fetal human diploid lung fibroblasts, which differ in tissue origin, proliferation, and antioxidant enzymes activities. The chromium concentrations from 1 to 5 μM cause nontoxic effects and activate antioxidant enzymes to overcome oxidative stress. In spite of some differences in the endogenous antioxidant activities, both cell lines reveal the same range of toxic concentrations (20-30 μM). The irreversible inhibition of glutathione-dependent antioxidant enzymes develops under toxic concentrations and serves as a marker of toxicity. The endogenous antioxidant activity influences time-dependent expression of Cr(VI) toxicity and the dynamics of antioxidant enzymes activity under nontoxic conditions. The cell antioxidant defense system is an important marker of the cell adaptive capacity under nontoxic and toxic conditions.
The aim of this study is to establish antioxidant indicators of chromium toxicity in fetal human lung fibroblasts (HLF). The results obtained corroborate and develop our earlier observation of low-dose and long-term action of Cr(VI) on human cells in culture. In the case of a nontoxic chromium dose, temporary oxidative stress is overcome by increased activity of the antioxidant system with correlation to cell cycle re-entry. The toxic concentrations misbalance the cell antioxidant defense systems and cause irreversible growth arrest and massive cell death by apoptosis. Sub-toxicity is defined as toxicity stretched in time. The activity of GPx (glutathione peroxidase) is proposed as a biomarker of oxidative stress caused by Cr(VI), and the GR (glutathione reductase) inhibition is considered as a marker of the toxicity developed under the complex Cr(VI) action. In HLF cells the glutathione dependent defense system is the first system destroyed in response to toxic chromium action. Only the balance between SOD (superoxide dismutase) and H(2)O(2) degrading enzymes (catalase and GPx), should play an important role in the fate of a cell, not individual enzymes.
Rapid and effective separation of bacteria Arthrobacter oxydans was performed using capillary electrophoresis. For optimal separation of bacteria the influence of buffer concentration, pH and applied voltage were studied. It was found that the most appropriate conditions for electrophoretic mobility measurements are as follows: applied voltage 6-14 kV; buffer concentration 5-10 mM pH 6-8. At the stationary phase of growth there are always two main heterogeneous peaks. They are connected with the morphology of bacteria as well as with cell aggregation. The heterogeneity of samples may be explained by surface modifications of bacterial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.