Molecular phylogeny of the Greek populations of the genus Ligidium (Isopoda: Oniscidea) using three mtDNA gene segments. -Zoologica Scripta , 35, 459-472.The phylogeny of Greek populations of the terrestrial isopod genus Ligidium is reconstructed based on three mtDNA gene segments: 12S rRNA, 16S rRNA and COI. Two widely distributed European species, as well as three outgroups belonging to different isopod genera, were also included in the analyses. The samples used represent almost all Ligidium species known to occur in Greece, as well as several populations of unknown specific status plus some new records. Phylogenetic analyses of the combined data set were performed using Bayesian inference and maximum parsimony. The two main sister clades with good support indicate the sympatric differentiation of two lineages in southern continental Greece (Peloponnisos), where Ligidium populations exhibit a mosaic distribution of sibling species. The insular populations of the Aegean Islands show increased genetic divergence and form separate clades. The presence of a third lineage of Asiatic origin is strongly suggested by both the molecular phylogeny and morphology. The only presumably valid diagnostic morphological character exhibits only partial correspondence to well supported clades of the molecular phylogeny. Genetic differentiation between populations is very high, a fact that can be attributed to the strict ecological specialization of these animals that leads to increased levels of isolation even between populations that are in close proximity. As a consequence, Greek Ligidium populations, especially those present on islands, are unique genetic pools and extremely vulnerable to extinction.
The genetic differentiation and the phylogenetic relationships of eight Atherina boyeri Greek populations have been investigated at the mtDNA level. The populations studied are from two different lakes, a lagoon, the interface zone between the lagoon and the sea, and four marine sites. RFLP analysis of three mtDNA segments (12s rRNA, 16s rRNA and D-loop) amplified by PCR was used. Six, seven and eight restriction enzymes were found to have at least one recognition site at 12s rRNA, 16s rRNA and D-loop respectively. Twenty-one different haplotypes were detected among the populations studied. Several restriction patterns were revealed. These patterns can be used for the discrimi-
The genetic divergence and the phylogenetic relationships of six Atherina boyeri (freshwater and marine origin) and five Atherina hepsetus populations from Greece were investigated using partial sequence analysis of 12s rRNA, 16s rRNA and control region mtDNA segments. Three different well divergent groups were revealed; the first one includes A. boyeri populations living in the sea, the second includes A. boyeri populations living in the lakes and lagoons whereas the third one includes all A. hepsetus populations. Fifty‐seven different haplotypes were detected among the populations studied. In all three mtDNA segments examined, sequence analysis revealed the existence of fixed haplotypic differences discriminating A. boyeri populations inhabiting the lagoon and the lakes from both the coastal A. boyeri and the A. hepsetus populations. The genetic divergence values estimated between coastal (marine) A. boyeri populations and those living in the lagoon and the lakes are of the same order of magnitude as those observed among coastal A. boyeri and A. hepsetus populations. The results obtained by different phylogenetic methods were identical. The deep sequence divergence with the fixed different haplotypes observed suggests the occurrence of a cryptic or sibling species within A. boyeri complex. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92, 151–161.
Genetic differentiation and phylogenetic relationships among 15 Atherina boyeri populations from several marine and lagoon or lake sites in Greece were investigated using mtDNA analysis. PCR-RFLP analysis of 12s, 16s rRNA genes and D-loop revealed 23 haplotypes. All the lake or lagoon populations, as well as the Kymi and Kalymnos populations that originated from sites with lagoonlike environmental conditions, showed haplotypes 1-6, clearly distinguishable from the marine populations, which exhibited types 7-23. The genetic divergence values estimated between the lagoon and the marine populations ranged from 5.55 to 10.45%. The high genetic differentiation observed between these two types of populations is also highlighted by the dendrograms obtained using UPGMA and maximum parsimony methods.
In the present study, we employed three mitochondrial DNA genetic markers in a phylogenetic analysis aiming at the delineation of the relationships amongst nominal Trachelipus kytherensis populations, as well as between populations of this species and of Trachelipus aegaeus and a new form, occurring syntopically with the latter. Both the phylogenetic analysis and the genetic distances separating populations, show the presence of several distinct and well differentiated clades that undermine the monophyly of T. kytherensis. On the other hand, despite the insular distribution of T. aegaeus populations, their divergence is low and the monophyly of this taxon can be rescued by the inclusion of two more insular populations previously assigned to T. kytherensis. The patterns of genetic divergence among clades are only partially congruent with the geographic distribution of populations. The validity of taxonomic characters used so far in the genus appears to be questionable; therefore, a more comprehensive phylogenetic study at a population level is deemed necessary for understanding the divergence of Trachelipus lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.