We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 square degree search area in the griz filter set. We forecast 1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05
A strong signal for double parton (DP) scattering is observed in a 16 pb(-1) sample of <(p)over bar p> --> gamma/pi(0) + 3 jets + X data from the CDF experiment at the Fermilab Tevatron. In DP events, two separate hard scatterings take place in a single <(p)over bar p> collision. We isolate a large sample of data (similar to 14 000 events) of which 53% are found to be DP. The process-independent parameter of double parton scattering, sigma(eff), is obtained without reference to theoretical calculations by comparing observed DP events to events with hard scatterings in separate <(p)over bar p> collisions. The result sigma(eff) = (14.5 +/- 1.7(-2.3)(+1.7)) mb represents a significant improvement over previous measurements, and is used to constrain simple models of parton spatial density. The Feynman x dependence of sigma(eff) is investigated and none is apparent. Further, no evidence is found for kinematic correlations between the two scatterings in DP events
We present the first cosmological parameter constraints using measurements of type Ia supernovae (SNe Ia) from the Dark Energy Survey Supernova Program (DES-SN). The analysis uses a subsample of 207 spectroscopically confirmed SNe Ia from the first three years of DES-SN, combined with a low-redshift sample of 122 SNe from the literature. Our “DES-SN3YR” result from these 329 SNe Ia is based on a series of companion analyses and improvements covering SN Ia discovery, spectroscopic selection, photometry, calibration, distance bias corrections, and evaluation of systematic uncertainties. For a flat ΛCDM model we find a matter density
. For a flat wCDM model, and combining our SN Ia constraints with those from the cosmic microwave background (CMB), we find a dark energy equation of state
, and
. For a flat w
0
w
a
CDM model, and combining probes from SN Ia, CMB and baryon acoustic oscillations, we find
and
. These results are in agreement with a cosmological constant and with previous constraints using SNe Ia (Pantheon, JLA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.